Assigning boundary conditions, such as acoustic impedance, to the frequency
domain thermoviscous wave equations (TWE), derived from the linearized
Navier-Stokes equations (LNSE) poses a Helmholtz problem, solution to which
yields a discrete set of complex eigenfunctions and eigenvalue pairs. The
proposed method -- the inverse Helmholtz solver (iHS) -- reverses such
procedure by returning the value of acoustic impedance at one or more unknown
impedance boundaries (IBs) of a given domain, via spatial integration of the
TWE for a given real-valued frequency with assigned conditions on other
boundaries. The iHS procedure is applied to a second-order spatial
discretization of the TWEs on an unstructured staggered grid arrangement. Only
the momentum equation is extended to the center of each IB face where pressure
and velocity components are co-located and treated as unknowns. The iHS is
finally closed via assignment of the surface gradient of pressure phase over
the IBs, corresponding to assigning the shape of the acoustic waveform at the
IB. The iHS procedure can be carried out independently for different
frequencies, making it embarrassingly parallel, and able to return the complete
broadband complex impedance distribution at the IBs in any desired frequency
range to arbitrary numerical precision. The iHS approach is first validated
against Rott's theory for viscous rectangular and circular ducts. The impedance
of a toy porous cavity with a complex geometry is then reconstructed and
validated with companion fully compressible unstructured Navier-Stokes
simulations resolving the cavity geometry. Verification against one-dimensional
impedance test tube calculations based on time-domain impedance boundary
conditions (TDIBC) is also carried out. Finally, results from a preliminary
analysis of a thermoacoustically unstable cavity are presented.Comment: As submitted to AIAA Aviation 201