193 research outputs found
Statistical Reconstruction of Qutrits
We discuss a procedure of measurement followed by the reproduction of the
quantum state of a three-level optical system - a frequency- and spatially
degenerate two-photon field. The method of statistical estimation of the
quantum state based on solving the likelihood equation and analyzing the
statistical properties of the obtained estimates is developed. Using the root
approach of estimating quantum states, the initial two-photon state vector is
reproduced from the measured fourth moments in the field . The developed
approach applied to quantum states reconstruction is based on the amplitudes of
mutually complementary processes. Classical algorithm of statistical estimation
based on the Fisher information matrix is generalized to the case of quantum
systems obeying Bohr's complementarity principle. It has been experimentally
proved that biphoton-qutrit states can be reconstructed with the fidelity of
0.995-0.999 and higher.Comment: Submitted to Physical Review
Generation of a wave packet tailored to efficient free space excitation of a single atom
We demonstrate the generation of an optical dipole wave suitable for the
process of efficiently coupling single quanta of light and matter in free
space. We employ a parabolic mirror for the conversion of a transverse beam
mode to a focused dipole wave and show the required spatial and temporal
shaping of the mode incident onto the mirror. The results include a proof of
principle correction of the parabolic mirror's aberrations. For the application
of exciting an atom with a single photon pulse we demonstrate the creation of a
suitable temporal pulse envelope. We infer coupling strengths of 89% and
success probabilities of up to 87% for the application of exciting a single
atom for the current experimental parameters.Comment: to be published in Europ. Phys. J.
Bim: the setback or solution to project cost issues in Malaysia construction industry?
Malaysia is progressing into Industry Revolution (IR) 4.0 which emphasizes more
onto digital, data and artificial intelligence where everything is expected to be automated.
However, cost tends to be a major issue at the pioneer stage of embracing technology where
Building Information Modelling (BIM) for example tends to be a cost tussle for the current
construction industry. Yet, research has shown that BIM is arguably one of the technology
platforms in combating the costing issue considering that BIM enables 3D model elements to
link to cost and auto-generate quantities which potentially achieve cost-effective project. Due
to the conflicting perspectives of how BIM affects project cost issues, it is imperative to
investigate the cost-related issues in implementing BIM in the project and to determine how
BIM in general positively influences the overall project cost. Qualitative research is adopted in
this study. A semi-structured interview was conducted among four professionals who employs
BIM in their project. They consist of the assistant manager, senior manager and chief executive
officer. The data collected is analysed by utilising Matrix Table for better organisation. The
scope of the study is in the Selangor state in which the local construction industry had applied
BIM in their construction industry up to the 3D stage. The results showed that the BIM
implementation cost is not too burdensome as it is only a one-time cost and does not vary
throughout the project period. In addition, the BIM influence on the overall cost of the project
is beneficial to the industry. It improves workflow and cost management. In conclusion, BIM is
beneficial to the construction industry in the long term. It is important to resolve the costrelated issues for implement BIM and hence, encourage the usage of BIM, especially in the IR
4.0 ecosyste
Heralded single photon absorption by a single atom
The emission and absorption of single photons by single atomic particles is a
fundamental limit of matter-light interaction, manifesting its quantum
mechanical nature. At the same time, as a controlled process it is a key
enabling tool for quantum technologies, such as quantum optical information
technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission
and absorption will allow implementing quantum networking scenarios [1, 7, 8,
9], where photonic communication of quantum information is interfaced with its
local processing in atoms. In studies of single-photon emission, recent
progress includes control of the shape, bandwidth, frequency, and polarization
of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the
demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption
of a single photon by a single atom is much less investigated; proposals exist
but only very preliminary steps have been taken experimentally such as
detecting the attenuation and phase shift of a weak laser beam by a single atom
[21, 22], and designing an optical system that covers a large fraction of the
full solid angle [23, 24, 25]. Here we report the interaction of single
heralded photons with a single trapped atom. We find strong correlations of the
detection of a heralding photon with a change in the quantum state of the atom
marking absorption of the quantum-correlated heralded photon. In coupling a
single absorber with a quantum light source, our experiment demonstrates
previously unexplored matter-light interaction, while opening up new avenues
towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure
Clinicians' caseload management behaviours as explanatory factors in patients' length of time on caseloads : a predictive multilevel study in paediatric community occupational therapy
Peer reviewedPublisher PD
Understanding the Relationship Between Perceived Quality Cues and Quality Attributes in the Purchase of Meat in Malaysia
This study utilizes the Total Food Quality Model to gain a better understanding of how Malaysian consumers make their decision to purchase fresh/chilled meat. We examine the association between quality cues and desired values (quality attributes) with regard to food that is guaranteed Halal, safe to eat, healthy and nutritious, has a good taste, represents good value for money, and is produced in a way that protects the environment and worker welfare. The findings reveal that different quality cues assume different levels of importance when pursuing different desired values
Quantum Computing and Quantum Simulation with Group-II Atoms
Recent experimental progress in controlling neutral group-II atoms for
optical clocks, and in the production of degenerate gases with group-II atoms
has given rise to novel opportunities to address challenges in quantum
computing and quantum simulation. In these systems, it is possible to encode
qubits in nuclear spin states, which are decoupled from the electronic state in
the S ground state and the long-lived P metastable state on the
clock transition. This leads to quantum computing scenarios where qubits are
stored in long lived nuclear spin states, while electronic states can be
accessed independently, for cooling of the atoms, as well as manipulation and
readout of the qubits. The high nuclear spin in some fermionic isotopes also
offers opportunities for the encoding of multiple qubits on a single atom, as
well as providing an opportunity for studying many-body physics in systems with
a high spin symmetry. Here we review recent experimental and theoretical
progress in these areas, and summarise the advantages and challenges for
quantum computing and quantum simulation with group-II atoms.Comment: 11 pages, 7 figures, review for special issue of "Quantum Information
Processing" on "Quantum Information with Neutral Particles
TESS Discovery Of Twin Planets Near 2:1 Resonance Around Early M Dwarf TOI 4342
With data from the Transiting Exoplanet Survey Satellite (TESS), we showcase improvements to the MIT Quick Look Pipeline (QLP) through the discovery and validation of a multiplanet system around M dwarf TOI 4342 (Tmag = 11.032, M⋆ = 0.63 M⊙, R⋆ = 0.60 R⊙, Teff = 3900 K, d = 61.54 pc). With updates to QLP, including a new multiplanet search, as well as faster cadence data from TESS\u27s First Extended Mission, we discovered two sub-Neptunes (Rb = 2.266 (+0.038)/(-0.038) R⊕ and Rc = 2.415 (+0.043)/(-0.040) R⊕; Pb = 5.538 days and Pc = 10.689 days) and validated them with ground-based photometry, spectra, and speckle imaging. Both planets notably have high transmission spectroscopy metrics of 36 and 32, making TOI 4342 one of the best systems for comparative atmospheric studies. This system demonstrates how improvements to QLP, along with faster cadence full-frame images, can lead to the discovery of new multiplanet systems
TESS Discovery of Twin Planets near 2:1 Resonance around Early M-Dwarf TOI 4342
With data from the Transiting Exoplanet Survey Satellite (TESS), we showcase
improvements to the MIT Quick-Look Pipeline (QLP) through the discovery and
validation of a multi-planet system around M-dwarf TOI 4342 (,
, , K,
pc). With updates to QLP, including a new multi-planet search, as well as
faster cadence data from TESS' First Extended Mission, we discovered two
sub-Neptunes ( and ; = 5.538 days and = 10.689 days)
and validated them with ground-based photometry, spectra, and speckle imaging.
Both planets notably have high transmission spectroscopy metrics (TSMs) of 36
and 32, making TOI 4342 one of the best systems for comparative atmospheric
studies. This system demonstrates how improvements to QLP, along with faster
cadence Full-Frame Images (FFIs), can lead to the discovery of new multi-planet
systems.Comment: accepted for publication in A
Inducible Caspase9-mediated suicide gene for MSC-based cancer gene therapy
Cellular therapies based on mesenchymal stromal/stem cells (MSC) are promising strategies in regenerative medicine and oncology. Despite encouraging results, there is still some level of concerns on inoculating MSC in cancer patients. To face this issue, one possibility resides in engineering MSC by incorporating a suicide gene in order to control their fate once infused. Strategies based on Herpes Simplex Virus Thymidine Kinase (HSV-TK) and the Cytosine Deaminase genes have been developed and more recently a novel suicide gene, namely, iCasp9, has been proposed. This approach is based on a variant of human Caspase9 that binds with high affinity to a synthetic, bioinert small molecule (AP20187) leading to cell death. Based on this technology so far marginally applied to MSC, we tested the suitability of iCasp9 suicide strategy in MSC to further increase their safety. MSC have been transfected by a lentiviral vector carrying iCasp9 gene and then tested for viability after AP20187 treatment in comparison with mock-transfected cells. Moreover, accounting our anti-tumor approaches based on MSC expressing potent anti-cancer ligand TNF-Related Apoptosis-Inducing Ligand (TRAIL), we generated adipose MSC co-expressing iCasp9 and TRAIL successfully targeting an aggressive sarcoma type. These data show that anti-cancer and suicide mechanisms can coexist without affecting cells performance and hampering the tumoricidal activity mediated by TRAIL. In conclusion, this study originally indicates the suitability of combining a MSC-based anti-cancer gene approach with iCasp9 demonstrating efficiency and specificity
- …