111 research outputs found
High resolution mapping of a novel late blight resistance gene Rpi-avll, from the wild Bolivian species Solanum avilesii
Both Mexico and South America are rich in Solanum species that might be valuable sources of resistance (R) genes to late blight (Phytophthora infestans). Here, we focus on an R gene present in the diploid Bolivian species S. avilesii. The genotype carrying the R gene was resistant to eight out of 10 Phytophthora isolates of various provenances. The identification of a resistant phenotype and the generation of a segregating population allowed the mapping of a single dominant R gene, Rpi-avl1, which is located in an R gene cluster on chromosome 11. This R gene cluster is considered as an R gene “hot spot”, containing R genes to at least five different pathogens. High resolution mapping of the Rpi-avl1 gene revealed a marker co-segregating in 3890 F1 individuals, which may be used for marker assisted selection in breeding programs and for further cloning of Rpi-avl
Manipulation of starch granule size distribution in potato tubers by modulation of plastid division
Plant science
Improved cassava starch by antisense inhibition of granule-bound starch synthase I
Cassava is a poor man's crop which is mainly grown as a subsistence crop in many developing countries. Its commercial use was first as animal feed (also known as tapioca), but has shifted since the late sixties to a source of native starch. The availability of native starches, which on the one hand do not require substantial chemical derivatisation and on the other hand have improved properties, would make cassava also for small farmers a potentially attractive cash crop. Since breeding is difficult in this polyploid, vegetatively propagated, crop a transgenic approach would be ideal to improve certain characteristics. We have created a cassava genotype producing amylose-free starch by genetic modification. The absence of amylose increased the clarity and stability of gels made with the transgenic starch, without requiring treatment with environment-unfriendly chemicals such as epoxides (propylene oxide, ethylene oxide) and acetic anhydride, which are normally used to improve stability. The amylose-free starch showed no changes in particle size distribution, chain length distribution or phosphorous content when compared to amylose-containing starch, but the granule melting temperature was increased by almost 2°C. Furthermore, the amylose-free cassava starch shows enhanced clarity and stability properties. These improved functionalities are desired in technical applications in paper and textile manufacturing, but also in the food industry for the production of sauces, dairy products and noodle
High resolution mapping of a novel late blight resistance gene Rpi-avll, from the wild Bolivian species Solanum avilesii
Both Mexico and South America are rich in Solanum species that might be valuable sources of resistance (R) genes to late blight (Phytophthora infestans). Here, we focus on an R gene present in the diploid Bolivian species S. avilesii. The genotype carrying the R gene was resistant to eight out of 10 Phytophthora isolates of various provenances. The identification of a resistant phenotype and the generation of a segregating population allowed the mapping of a single dominant R gene, Rpi-avl1, which is located in an R gene cluster on chromosome 11. This R gene cluster is considered as an R gene “hot spot”, containing R genes to at least five different pathogens. High resolution mapping of the Rpi-avl1 gene revealed a marker co-segregating in 3890 F1 individuals, which may be used for marker assisted selection in breeding programs and for further cloning of Rpi-avl
Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia
The development and testing in the field of genetically modified -so called- orphan crops like cassava in tropical countries is still in its infancy, despite the fact that cassava is not only used for food and feed but is also an important industrial crop. As traditional breeding of cassava is difficult (allodiploid, vegetatively propagated, outbreeding species) it is an ideal crop for improvement through genetic modification. We here report on the results of production and field testing of genetically modified low-amylose transformants of commercial cassava variety Adira4 in Indonesia. Twenty four transformants were produced and selected in the Netherlands based on phenotypic and molecular analyses. Nodal cuttings of these plants were sent to Indonesia where they were grown under biosafety conditions. After two screenhouse tests 15 transformants remained for a field trial. The tuberous root yield of 10 transformants was not significantly different from the control. Starch from transformants in which amylose was very low or absent showed all physical and rheological properties as expected from amylose-free cassava starch. The improved functionality of the starch was shown for an adipate acetate starch which was made into a tomato sauce. This is the first account of a field trial with transgenic cassava which shows that by using genetic modification it is possible to obtain low-amylose cassava plants with commercial potential with good root yield and starch quality
Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago
Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world
Soil and Cultivar Type Shape the Bacterial Community in the Potato Rhizosphere
The rhizospheres of five different potato cultivars (including a genetically modified cultivar) obtained from a loamy sand soil and two from a sandy peat soil, next to corresponding bulk soils, were studied with respect to their community structures and potential function. For the former analyses, we performed bacterial 16S ribosomal RNA gene-based PCR denaturing gradient gel electrophoresis (PCR-DGGE) on the basis of soil DNA; for the latter, we extracted microbial communities and subjected these to analyses in phenotype arrays (PM1, PM2, and PM4, Biolog), with a focus on the use of different carbon, sulfur and phosphorus sources. In addition, we performed bacterial PCR-DGGE on selected wells to assess the structures of these substrate-responsive communities. Effects of soil type, the rhizosphere, and cultivar on the microbial community structures were clearly observed. Soil type was the most determinative parameter shaping the functional communities, whereas the rhizosphere and cultivar type also exerted an influence. However, no genetically modified plant effect was observed. The effects were imminent based on general community analysis and also single-compound analysis. Utilization of some of the carbon and sulfur sources was specific per cultivar, and different microbial communities were found as defined by cultivar. Thus, both soil and cultivar type shaped the potato root-associated bacterial communities that were responsive to some of the substrates in phenotype arrays
Higher Plant Cytochrome b5 Polypeptides Modulate Fatty Acid Desaturation
BACKGROUND: Synthesis of polyunsaturated fatty acids (PUFAs) in the endoplasmic reticulum of plants typically involves the fatty acid desaturases FAD2 and FAD3, which use cytochrome b(5) (Cb5) as an electron donor. Higher plants are reported to have multiple isoforms of Cb5, in contrast to a single Cb5 in mammals and yeast. Despite the wealth of information available on the roles of FAD2 and FAD3 in PUFA synthesis, information regarding the contributions of various Cb5 isoforms in desaturase-mediated reactions is limited. RESULTS: The present functional characterization of Cb5 polypeptides revealed that all Arabidopsis Cb5 isoforms are not similarly efficient in ω-6 desaturation, as evidenced by significant variation in their product outcomes in yeast-based functional assays. On the other hand, characterization of Cb5 polypeptides of soybean (Glycine max) suggested that similar ω-6 desaturation efficiencies were shared by various isoforms. With regard to ω-3 desaturation, certain Cb5 genes of both Arabidopsis and soybean were shown to facilitate the accumulation of more desaturation products than others when co-expressed with their native FAD3. Additionally, similar trends of differential desaturation product accumulation were also observed with most Cb5 genes of both soybean and Arabidopsis even if co-expressed with non-native FAD3. CONCLUSIONS: The present study reports the first description of the differential nature of the Cb5 genes of higher plants in fatty acid desaturation and further suggests that ω-3/ω-6 desaturation product outcome is determined by the nature of both the Cb5 isoform and the fatty acid desaturases
C. elegans SWAN-1 Binds to EGL-9 and Regulates HIF-1-Mediated Resistance to the Bacterial Pathogen Pseudomonas aeruginosa PAO1
Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing
Cisgenesis and intragenesis as new strategies for crop improvement
Cisgenesis and intragenesis are emerging plant breeding technologies which offer great promise for future acceptance of genetically engineered crops. The techniques employ traditional genetic engineering methods but are confined to transferring of genes and genetic elements between sexually compatible species that can breed naturally. One of the main requirements is the absence of selectable marker genes (such as antibiotic resistance genes) in the genome. Hence the sensitive issues with regard to transfer of foreign genes and antibiotic resistance are overcome. It is a targeted technique involving specific locus; therefore, linkage drag that prolongs the time for crop improvement in traditional breeding does not occur. It has great potential for crop improvement using superior alleles that exist in the untapped germplasm or wild species. Cisgenic and intragenic plants may not face the same stringent regulatory assessment for field release as transgenic plants which is a clear added advantage that would save time. In this chapter, the concepts of cis/intragenesis and the prerequisites for the development of cis/intragenesis plants are elaborated. Strategies for marker gene removal after selection of transformants are discussed based on the few recent reports from various plant species
- …