507 research outputs found
Analysis of genome expression of rhizobium etli in free living and plant-associated symbiotic state
Comunicaciones a congreso
Recurrent acquisition of cytosine methyltransferases into eukaryotic retrotransposons
Transposable elements are in a constant arms race with the silencing mechanisms of their host genomes. One silencing mechanism commonly used by many eukaryotes is dependent on cytosine methylation, a covalent modification of DNA deposited by C5 cytosine methyltransferases (DNMTs). Here, we report how two distantly related eukaryotic lineages, dinoflagellates and charophytes, have independently incorporated DNMTs into the coding regions of distinct retrotransposon classes. Concomitantly, we show that dinoflagellates of the genus Symbiodinium have evolved cytosine methylation patterns unlike any other eukaryote, with most of the genome methylated at CG dinucleotides. Finally, we demonstrate the ability of retrotransposon DNMTs to methylate CGs de novo, suggesting that retrotransposons could self-methylate retrotranscribed DNA. Together, this is an example of how retrotransposons incorporate host-derived genes involved in DNA methylation. In some cases, this event could have implications for the composition and regulation of the host epigenomic environment
Effect of exploitation and exploration on the innovative as outcomes in entrepreneurial firms
[EN] The main aim of this study is to establish the effect of the Exploitation and Exploration; and the influence of these learning flows on the Innovative Outcome (IO). The Innovative Outcome refers to new products, services, processes (or improvements) that the organization has obtained as a result of an innovative process. For this purpose, a relationship model is defined, which is empirically contrasted, and can explains and predicts the cyclical dynamization of learning flows on innovative outcome in knowledge intensive firms.
The quantitative test for this model use the data from entrepreneurial firms biotechnology sector. The statistical analysis applies a method based on variance using Partial Least Squares (PLS).
Research results confirm the hypotheses, that is, they show a positive dynamic effect between the Exploration and the Innovative as outcomes. In the same vein, they results confirm the presence of the cyclic movement of innovative outcome with the Exploitation.In addition, this research is part of the Project ECO2015-71380-R funded by the Spanish Ministry of Economy, Industry and Competitiveness and the State Research Agency. Co-financed by the European Regional Development Fund (ERDF).Vargas-Mendoza, NY.; Lloria, MB.; Salazar Afanador, A.; Vergara Domínguez, L. (2018). Effect of exploitation and exploration on the innovative as outcomes in entrepreneurial firms. International Entrepreneurship and Management Journal. 14(4):1053-1069. https://doi.org/10.1007/s11365-018-0496-5S10531069144Alegre, J., & Chiva, R. (2008). Assessing the impact of organizational learning capability on product innovation performance: an empirical test. Technovation, 28, 315–326.Amara, N., Landry, R., Becheikh, N., & Ouimet, M. (2008). Learning and novelty of innovation in established manufacturing SMEs. Technovation, 28, 450–463.Aragón-Mendoza, J., Pardo del Val, M., & Roig, S. (2016). The influence of institutions development in venture creation decision: a cognitive view. Journal of Business Research, 69(11), 4941–4946.Ardichvili, A. (2008). Learning and knowledge sharing in virtual communities of practice: motivators, barriers, and enablers. Advances in Developing Human Resources, 10(4), 541–554.Argyris, C., & Schön, D. (1978). Organizational learning: a theory of action perspective. Reading: Addison Wesley.Bagozzi, R. P., Yi, Y., & Singh, S. (1991). On the use of structural equation models in experimental designs: two extensions international. Journal of Research in Marketing, 8, 125–140.Belda, J., Vergara L., Salazar, A., & Safont G. (2018). Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs, accepted for publication in Signal Processing.Boland, R. J. J., & Tenkasi, R. V. (1995). Perspective making and perspective taking in communities of knowing. Organization Science, 6(4), 350–372.Bontis, N., (1998). Intellectual capital: an exploratory study that develops measures models. Management Decision, 36, 63–76.Bontis, N. (1999). Managing an organizational learning system by aligning stocks and flows of knowledge: an empirical examination of intellectual capital, knowledge management, and business performance. 1999. Management of Innovation and New Technology Research Centre, McMaster University.Bontis, N., Keow, W., & Richardson, S. (2000). Intellectual capital and the nature of business in Malaysia. Journal of Intellectual Capital, 1(1), 85–100Bontis, N., Hullan, J., & Crossan, M. (2002). Managing an organizational learning system by aligning stocks and flows. Journal of Management Studies, 39, 438–469.Brachos, D., Kostopulos, K., Sodersquist, K. E., & Prastacos, G. (2007). Knowledge effectiveness, social context and innovation. Journal of Knowledge Management, 11(5), 31–44.Calantone, R. J., Cavusgil, S. T., & Zhao, Y. (2002). Learning orientation, firm innovation capability, and firm performance. Industrial Marketing Management, 31, 515–524.Chang, T. J., Yeh, S. P., & Yeh, I. J. (2007). The effects of joint rewards system in new product development. International Journal of Manpower, 28(3/4), 276–297.Chin, W. (1998). The partial least square approach to structural equation modeling. In G. A. Marcoulides (Ed.) (pp. 294–336). New Jersey: Lawrence Erlbaum Associates.Cho, N., Li, G., & Su, C. (2007). An empirical study on the effect of individual factors on knowledge sharing by knowledge type. Journal of Global Business and Technology, 3(2), 1–15.Cohen, W. M., & Levin, R. C. (1989). Empirical studies of innovation and market structure. In R. Schmalansee & R. D. Willing (Eds.), Handbook of industrial organization II. New York: Elsevier.Cohen, W. M., & Levinthal, D. A. (1990). Absorptive-capacity – a new perspective on learning and innovation. Administrative Science Quarterly, 35, 128–152.Cooper, R. G. (2000). New product performance: what distinguishes the star products. Austrian Journal of Management, 25, 17–45.Crossan, M., & Berdrow, I. (2003). Organizational learning and strategic renewal. Strategic Management Journal, 24, 1087–1105.Crossan, M., & Apaydin, M. (2010). A multi-dimensional framework of organizational innovation: a systematic review of the literature. Journal of Management Studies, 47(6), 1154–1191.Crossan, M., Lane, H. W., & White, R. E. (1999). An organizational learning framework: from intuition to institution. Academy of Management Review, 24, 522–537.Damanpour, F., & Aravind, D. (2012). Managerial innovation: conceptions, processes, and antecedents. Management and Organization Review, 8(2), 423–454.Damanpour, F., & Shanthi, G. (2001). The dynamics of the adoption of products and process innovations in organizations. Journal of Management Studies, 38(1), 21–65.Decarolis, D. M., & Deeds, D. L. (1999). The impact of stock and flows of organizational knowledge on firm performance: An empirical investigation of the biotechnology industry. Strategic Management Journal, 20, 953–968.Demartini, C. (2015). Relationships between social and intellectual capital: empirical Evidence from IC statements. Knowledge and Process Management, 22(2), 99–111.Dupuy, F. (2004). Sharing knowledge: they why and how of organizational change. Hampshire: Palgrave Macmillan.Fornell, C., & Bookstein, F. I. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440–452.Ganter, A., & Hecker, A. (2013). Deciphering antecedents of organizational innovation. Journal of Business Research, 66(5), 575–584.Ganter, A., & Hecker, A. (2014). Configurational paths to organizational innovation: qualitative comparative analyses of antecedents and contingencies. Journal of Business Research, 67, 1285–1292.Gopalakrishnan, S., & Damanpour, F. (1997). A review of innovation research in economics, sociology and technology management. International Journal of Management Science, 25, 15–28.Hedberg, B. (1981). How organizations learn and unlearn. In P. Nystrom & W. Starbuck (Eds.), Handbook of organizational design. New York: Oxford University.Hedlund, G., & Nonaka, I. (1993). Models of knowledge management in the west and Japan. In: P. Lorange, B. Chacravrarthy, J. Ross, and J. Van de ven (Eds.) Cambridge: Basil Blackwell.Henseler, J., Ringle, C.M., & Sinkovics, R.R. (2009). The use the partial least squares path modeling. In: R. Sinkovics and N. Pervez (Eds.) 277–319.Hsu, I. (2006). Enhancing employee tendencies to share knowledge-case studies on nine companies in Taiwan. International Journal of Information Management, 26(4), 326–338.Hsu, I. (2008). Knowledge sharing practices as a facilitating factor for improving organizational performance though human capital: a preliminary test. Expert Systems with Application, 35, 316–1326.Huang, Q., Davison, R., & Gu, J. (2008). Impact of personal and cultural factors on knowledge sharing in China. Asia Pacific Journal Management, 25(3), 451–471.Ibarra, H. (1993). Network centrality, power, and innovation involvement – determinants of technical and administrative roles. Academy of Management Journal, 36(3), 471–501.Iebra, I. L., Zegarra, P. S., & Zegarra, A. S. (2011). Learning for sharing: an empirical analysis of organizational learning and knowledge sharin. International Entrepreneurship Management Journal, 7, 509–518.Ipe, M. (2003). Knowledge sharing in organizations: a conceptual framework. Human Resource Development Review, 2(4), 337–359.Jenkin, T. (2013). Extending the 4I organizational learning model: information sources, foraging processes and tools. Administrative Sciences, 3, 96–109.Jiménez-Jiménez, D., & Sanz-Valle, R. (2011). Innovation, organizational learning, and performance. Journal of Business Research, 64, 408–417.Kane, G. C., & Alavi, M. (2007). Information technology and organizational learning: an investigation of exploration and exploitation processes. Organization Science, 18(5), 796–812.Kleinbaum, D. G., Kupper, N. N., Muller, K. E. (1988). Applied regression analysis and other Multivariable’s methods, PWS KENT.Klomp, L., & Van Leeuwen, G. (2001). Linking innovation and firm performance: a new approach. International Journal of the Economics of Business, 8(3), 343–364.Lansisalmi, H., Kivimaki, M., Aalto, P., & Ruoranen, R. (2006). Innovation in healthcare: a systematic review of recent research. Nursing Science Quarterly, 19(1), 66–72.Laperrière, A., & Spence, M. (2015). Enacting international opportunities: the role of organizational learning in knowledge-intensive business services. Journal of International Entrepreneurship, 13(3), 212–241.Levitt, B., & March, J. G. (1988). Organizational learning. Annual Review of Sociology, 14, 319–340.Lin, H. (2007). Knowledge sharing and firm innovation capability: an empirical study. International Journal of Manpower, 28(3/4), 315–332.Lloria, M. B., & Moreno-Luzón, M. D. (2014). Organizational learning: proposal of an integrative scale and research instrument. Journal of Business Research, 67, 692–697.March, J. G. (1991). Exploration and exploitation in organizational learning. Organizational Science, 2, 71–87.Matikainen, M., Terho, H., Parvinen, P., & Juppo, A. (2016). The role and impact of firm’s strategic orientations on launch performance: significance of relationship orientation. Journal of Business & Industrial Marketing, 31(5), 625–639.Mone, M. A., McKinley, W., & Barker, V. L. (1998). Organizational decline and innovation: a contingency framework. Academy of Management Review, 23, 115–132.Moreno-Luzón, M. D., & Lloria, B. (2008). The role of non-structural and informal mechanisms of integration and integration as forces in knowledge creation. British Journal of Management, 19, 250–276.Moskaliuk, J., Bokhorst, F., & Cress, U. (2016). Learning from others' experiences: how patterns foster interpersonal transfer of knowledge-in-use. Computers in Human Behavior, 55, 69–75.Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company. How Japanese companies create the dynamics of innovation. New York: Oxford University Press.Nonaka, I., & von Krogh, G. (2009). Perspective tacit knowledge and knowledge conversion: controversy and advancement in organizational knowledge creation theory. Organization Science, 20(3), 635–652.Parida, V., Lahti, T., & Wincent, J. (2016). Exploration and exploitation and firm performance variability: a study of ambidexterity in entrepreneurial firms. International Entrepreneurship Management Journal, 12, 1147–1164.Pew, H., Plowman, D., & Hancock, P. (2008). The involving research on intellectual capital. Journal of Intellectual Capital, 9, 585–608.Potter, R. E., & Balthazard, P. A. (2004). The role of individual memory and attention processes during electronic brainstorming. MIS Quarterly, 28(4), 621–643.Ramadani, V., Hyrije, A. A., Léo-Paul, D., Gadaf, R., & Sadudin, I. (2017). The impact of knowledge spillovers and innovation on firm-performance: findings from the Balkans countries. International Entrepreneurship Management Journal, 13, 299–325.Ren, S., Shu, R., Bao, Y., & Chen, X. (2016). Linking network ties to entrepreneurial opportunity discovery and exploitation: the role of affective and cognitive trust. International Entrepreneurship and Management Journal, 12(2), 465–485.Ringle, C. M., Wende, S., & Will, A. (2005). Smart PLS 2.0 (M3) beta, Hamburg: http://www.smartpls.de .Ringle, C. M., Sarstedt, M., & Straub, D. (2012). A critical look at the use of PLS-SEM. MIS Quarterly, 36(1), iii–xiv.Sanchez, R., & Heene, A. (1997). A competence perspective on strategic learning and knowledge management. En Sanchez, R. and Heene, A. (eds.) Strategic learning and knowledge management. John Wiley and Sons.Seidler-de Alwis, R., & Hartmann, E. (2008). The use of tacit knowledge within innovative companies: knowledge management in innovative enterprises. Journal of Knowledge Management, 12(1), 133–147.Shrivastava, P. (1983). A typology of organizational learning systems. Journal of Management Studies, 20, 7–28.Tansky, J., Ribeiro, D., & Roig, S. (2010). Linking entrepreneurship and human resources in globalization. Human Resource Management, 49(2), 217–223.Teece, D. (2012). Dynamic capabilities: routines versus entrepreneurial action. Journal of Management Studies, 49(8), 1395–1401.Tenenhaus, M., Vinzi, V., Chatelin, Y., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 49, 159–205.vande Vrande, V., de Jong, J., Vanhaverbeke, W., & Rochemont, M. (2009). Open innovation in SMEs: trends, motives and management challenges. Technovation, 29, 423–437.Vargas, N., & Lloria, M. B. (2014). Dynamizing intellectual capital through enablers and learning flows. Industrial Management and Data Systems, 114(1), 2–20.Vargas, N., & Lloria, M. B. (2017). Performance and intellectual capital: how enablers drive value creation in organisations. Knowledge and Process Management, 24(2), 114–124.Vargas, N., Lloria, M. B., & Roig-Dobón, S. (2016). Main drivers of human capital, learning and performance. The Journal of Technology Transfer, 41(5), 961–978.Vergara, L., Salazar, A., Belda, J., Safont, G., Moral, S., & Iglesias, S. (2017). Signal processing on graphs for improving automatic credit card fraud detection. Proceeding of 2017 I.E. 51st international Carnahan Conference on Security Technology (ICCST 2017), https://doi.org/10.1109/CCST.2017.8167820 , 23–26 Oct, 2017, Madrid, Spain.Wallin, M. W., & Von Krogh, G. (2010). Organizing for open innovation: focus o the integration of knowledge. Organizational Dynamics, 39(2), 145–154.Wang, C. L., & Ahmed, P. K. (2004). Linking innovation and firm performance: a new approach. European International Journal of Technology Management, 27, 674–688.Wold, H. (1980). Model construction and evaluation when theoretical knowledge is scarce. In J. Kmenta & J. B. Ramsey (Eds.), Evaluation of econometric models (pp. 47–74). Cambridge: Academic Press.Wold, H. (1985). Factors influencing the outcome of economic sanctions. In Sixto Ríos Honorary. Trabajos de Estadística and de Investigación Operativa, 36(3), 325–337
The Sensitivity of HAWC to High-Mass Dark Matter Annihilations
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view
detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in
central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC
will observe gamma rays and cosmic rays with an array of water Cherenkov
detectors. The full HAWC array is scheduled to be operational in Spring 2015.
In this paper, we study the HAWC sensitivity to the gamma-ray signatures of
high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be
sensitive to diverse searches for dark matter annihilation, including
annihilation from extended dark matter sources, the diffuse gamma-ray emission
from dark matter annihilation, and gamma-ray emission from non-luminous dark
matter subhalos. Here we consider the HAWC sensitivity to a subset of these
sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the
Galactic center. We simulate the HAWC response to gamma rays from these sources
in several well-motivated dark matter annihilation channels. If no gamma-ray
excess is observed, we show the limits HAWC can place on the dark matter
cross-section from these sources. In particular, in the case of dark matter
annihilation into gauge bosons, HAWC will be able to detect a narrow range of
dark matter masses to cross-sections below thermal. HAWC should also be
sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The
constraints placed by HAWC on the dark matter cross-section from known sources
should be competitive with current limits in the mass range where HAWC has
similar sensitivity. HAWC can additionally explore higher dark matter masses
than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR
VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory
VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l.
in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design,
construction techniques and data acquisition system of the HAWC observatory.
HAWC is an air-shower array currently under construction at the same site of
VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water
Cherenkov detectors and two different data acquisition systems. It was in
operation between October 2011 and May 2012 with an average live time of 30%.
Besides the scientific verification purposes, the eight months of data were
used to obtain the results presented in this paper: the detector response to
the Forbush decrease of March 2012, and the analysis of possible emission, at
energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages,
10 figures). Corresponding authors: A.Marinelli and D.Zaboro
Recommended from our members
Rarity of monodominance in hyperdiverse Amazonian forests.
Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors
No silver bullet for digital soil mapping: country-specific soil organic carbon estimates across Latin America.
Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC estimates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil mapping (DSM).We identified country-specific predictors for SOC and tested the performance of five predictive algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs), random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regression kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors (5 x 5 km pixel resolution) were obtained from ISRIC - World Soil Information. Temperature, soil type, vegetation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and their respective weights varied across Latin America. We compared a large diversity of country-specific datasets and models, and were able to explain SOC variability in a range between ~ 1 and ~ 60 %, with no universal predictive algorithm among countries. A regional (n = 11 268 SOC estimates) ensemble of these five algorithms was able to explain ~ 39% of SOC variability from repeated 5-fold cross-validation.We report a combined SOC stock of 77.8 +- 43.6 Pg (uncertainty represented by the full conditional response of independent model residuals) across Latin America. SOC stocks were higher in tropical forests (30 +- 16.5 Pg) and croplands (13 +- 8.1 Pg). Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher elevations, and coastal plains, but provided similar regional stocks (77.8 +- 42.2 and 76.8 +- 45.1 Pg, respectively). These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the Harmonized World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with large area (i.e., Brazil, Bolivia, Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unrealistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the selection of predictive algorithms for SOC mapping should consider density of available data and variability of country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC estimates across Latin America. We provide a framework for improving country-specific mapping efforts and reducing current discrepancy of global, regional, and country-specific SOC estimates
Adaptive modulation of antibiotic resistance through intragenomic coevolution
Bacteria gain antibiotic resistance genes by horizontal acquisition of mobile genetic elements (MGEs) from other lineages. Newly acquired MGEs are often poorly adapted causing intragenomic conflicts; these are resolved by either compensatory adaptation - of the chromosome or the MGE - or reciprocal coadaptation. The footprints of such intragenomic coevolution are present in bacterial genomes, suggesting an important role promoting genomic integration of horizontally acquired genes, but direct experimental evidence of the process is limited. Here we show adaptive modulation of tetracycline resistance via intragenomic coevolution between Escherichia coli and the multidrug resistant plasmid RK2. Tetracycline treatments, including monotherapy or combination therapies with ampicillin, favoured de novo chromosomal resistance mutations coupled with mutations on RK2 impairing the plasmid-encoded tetracycline efflux pump. These mutations together provided increased tetracycline resistance at reduced cost. Additionally, the chromosomal resistance mutations conferred cross-resistance to chloramphenicol. Reciprocal coadaptation was not observed under ampicillin-only or no antibiotic selection. Intragenomic coevolution can create genomes comprising multiple replicons that together provide high-level, low-cost resistance, but the resulting co-dependence may limit the spread of coadapted MGEs to other lineages
- …