303 research outputs found

    Stability and Evolution of Supernova Fallback Disks

    Get PDF
    We show that thin accretion disks made of Carbon or Oxygen are subject to the same thermal ionization instability as Hydrogen and Helium disks. We argue that the instability applies to disks of any metal content. The relevance of the instability to supernova fallback disks probably means that their power-law evolution breaks down when they first become neutral. We construct simple analytical models for the viscous evolution of fallback disks to show that it is possible for these disks to become neutral when they are still young (ages of a few 10^3 to 10^4 years), compact in size (a few 10^9 cm to 10^11 cm) and generally accreting at sub-Eddington rates (Mdot ~ a few 10^14 - 10^18 g/s). Based on recent results on the nature of viscosity in the disks of close binaries, we argue that this time may also correspond to the end of the disk activity period. Indeed, in the absence of a significant source of viscosity in the neutral phase, the entire disk will likely turn to dust and become passive. We discuss various applications of the evolutionary model, including anomalous X-ray pulsars and young radio pulsars. Our analysis indicates that metal-rich fallback disks around newly-born neutron stars and black holes become neutral generally inside the tidal truncation radius (Roche limit) for planets, at \~10^11 cm. Consequently, the efficiency of the planetary formation process in this context will mostly depend on the ability of the resulting disk of rocks to spread via collisions beyond the Roche limit. It appears easier for the merger product of a doubly degenerate binary, whether it is a massive white dwarf or a neutron star, to harbor planets because it can spread beyond the Roche limit before becoming neutral.[Abridged]Comment: 34 pages, 2 figures, accepted for publication in Ap

    Effects of mandrel shape on deformation behavior for hot mandrel bending of elbows

    Get PDF
    Elbows of steel pipe joints are used in the industrial plants and are mainly manufactured by the hot mandrelbending from raw material of straight steel pipe. Elbows are generally manufactured at elevatedtemperature by means of pushing, expanding and bending of pipes simultaneously, using the innertool of mandrel. Characteristics of mandrel bending strongly depend on the integrated shape anddimensions of the mandrel. We investigate the effects of shape and dimension of mandrel on deformationbehaviors for hot mandrel bending of elbows, conducting experimental test and numerical analysis. Weclarify the effects of bending radius ratio Rout/Dout, expansion ratio Dout/Din, mandrel length ratio L/Doutand other items of mandrel shape. And optimum conditions of mandrel are estimated as conclusion

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Determining Vitamin D Status: A Comparison between Commercially Available Assays

    Get PDF
    Background: Vitamin D is not only important for bone health but can also affect the development of several non-bone diseases. The definition of vitamin D insufficiency by serum levels of 25-hydroxyvitamin D depends on the clinical outcome but might also be a consequence of analytical methods used for the definition. Although numerous 25-hydroxyvitamin D assays are available, their comparability is uncertain. We therefore aim to investigate the precision, accuracy and clinical consequences of differences in performance between three common commercially available assays. Methodology/Principal Findings: Serum 25-hydroxyvitamin D levels from 204 twins from the Swedish Twin Registry were determined with high-pressure liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLCAPCI-MS), a radioimmunoassay (RIA) and a chemiluminescent immunoassay (CLIA). High inter-assay disagreement was found. Mean 25-hydroxyvitamin D levels were highest for the HPLC-APCI-MS technique (85 nmol/L, 95% CI 81-89), intermediate for RIA (70 nmol/L, 95% CI 66-74) and lowest with CLIA (60 nmol/L, 95% CI 56-64). Using a 50-nmol/L cut-off, 8% of the subjects were insufficient using HPLC-APCI-MS, 22% with RIA and 43% by CLIA. Because of the heritable component of 25-hydroxyvitamin D status, the accuracy of each method could indirectly be assessed by comparison of within-twin pair correlations. The strongest correlation was found for HPLC-APCI-MS (r = 0.7), intermediate for RIA (r = 0.5) and lowest for CLIA (r = 0.4). Regression analyses between the methods revealed a non-uniform variance (p<0.0001) depending on level of 25-hydroxyvitamin D. Conclusions/Significance: There are substantial inter-assay differences in performance. The most valid method was HPLCAPCI-MS. Calibration between 25-hydroxyvitamin D assays is intricate

    Quantitative determination of vitamin D metabolites in plasma using UHPLC-MS/MS

    Get PDF
    Vitamin D is an important determinant of bone health at all ages. The plasma concentrations of 25-hydroxy vitamin D (25-OH D) and other metabolites are used as biomarkers for vitamin sufficiency and function. To allow for the simultaneous determination of five vitamin D metabolites, 25-OH D3, 25-OH D2, 24,25-(OH)2 D3, 1,25-(OH)2 D3, and 1,25-(OH)2 D2, in low volumes of human plasma, an assay using ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) was established. Plasma samples were spiked with isotope-labeled internal standards and pretreated using protein precipitation, solid-phase extraction (SPE) and a Diels–Alder derivatization step with 4-phenyl-1,2,4-triazoline-3,5-dione. The SPE recovery rates ranged from 55% to 85%, depending on the vitamin D metabolite; the total sample run time was <5 min. Mass spectrometry was conducted using positive ion electrospray ionization in the multiple reaction monitoring mode on a quadrupole–quadrupole-linear ion trap instrument after pre-column addition of methylamine to increase the ionization efficiency. The intra- and inter-day relative standard deviations were 1.6–4.1% and 3.7–6.8%, respectively. The limit of quantitation for these compounds was determined to be between 10 and 20 pg/mL. The 25-OH D results were compared with values obtained for reference materials (DEQAS). In addition, plasma samples were analyzed with two additional Diasorin antibody assays. All comparisons with conventional methods showed excellent correlations (r2 = 0.9738) for DEQAS samples, demonstrating the high degree of comparability of the new UHPLC-MS/MS technique to existing methods
    corecore