361 research outputs found

    Human-induced earthquakes: E-PIE—a generic tool for Evaluating Proposals of Induced Earthquakes

    Get PDF
    The HiQuake database documents all cases of earthquake sequences proposed on scientific grounds to have been induced by anthropogenic industrial activity. Because these cases range from being highly plausible to unpersuasive, stakeholders have requested cases to be allocated plausibility grades. Since no questionnaire scheme existed that was sufficiently generalized to be applied to the diverse cases in HiQuake, we developed a new scheme for the task. Our scheme for Evaluating Proposals of Induced Earthquakes (E-PIE) comprises nine generalized questions with a simple weighting system to adjust for the variable diagnostic strength of different observations. Results are illustrated using a simple colored pie chart. We describe the E-PIE scheme and illustrate its application in detail using the example cases of the Groningen gas field in the Netherlands, the November 2017 M5.4 Pohang Enhanced Geothermal Systems-related earthquake sequence in South Korea, and the 2001 deep-penetrating bombing of Tora Bora, Afghanistan. To test the performance of E-PIE, five analysts independently applied it to a suite of 23 diverse cases from HiQuake. By far the most diagnostic questions are those concerning spatial and temporal correlations with industrial effects. Other data are diagnostically subsidiary. For individual cases, the agreement between analysts correlated positively with the strength of evidence for human induction. E-PIE results agree well with those from a specialist scheme tailored to fluid-injection cases. Its strong performance confirms its suitability to apply to the entire HiQuake database

    Hydrostatic pressure does not cause detectable changes to survival of human retinal ganglion

    Get PDF
    Purpose: Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods: A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. Results: Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions: Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina

    TGF-beta(2)- and H2O2-Induced Biological Changes in Optic Nerve Head Astrocytes Are Reduced by the Antioxidant Alpha-Lipoic Acid

    Get PDF
    Background/Aims: The goal of the present study was to determine whether transforming growth factor-beta(2) (TGF-beta(2))- and oxidative stress-induced cellular changes in cultured human optic nerve head (ONH) astrocytes could be reduced by pretreatment with the antioxidant alpha-lipoic acid (LA). Methods: Cultured ONH astrocytes were treated with 1.0 ng/ml TGF-beta(2) for 24 h or 200 mu M hydrogen peroxide (H2O2) for 1 h. Lipid peroxidation was measured by a decrease in cis-pari-naric acid fluorescence. Additionally, cells were pretreated with different concentrations of LA before TGF-beta 2 or H2O2 exposure. Expressions of the heat shock protein (Hsp) alpha B-crystallin and Hsp27, the extracellular matrix (ECM) component fibronectin and the ECM-modulating protein connective tissue growth factor (CTGF) were examined with immunohistochemistry and real-time PCR analysis. Results: Both TGF-beta(2) and H2O2 increased lipid peroxidation. Treatment of astrocytes with TGF-beta(2) and H2O2 upregulated the expression of alpha B-crystallin, Hsp27, fibronectin and CTGF. Pretreatment with different concentrations of LA reduced the TGF-beta(2)- and H2O2-stimulated gene expressions. Conclusion: We showed that TGF-beta(2)- and H2O2-stimulated gene expressions could be prevented by pretreatment with the antioxidant LA in cultured human ONH astrocytes. Therefore, it is tempting to speculate that the use of antioxidants could have protective effects in glaucomatous optic neuropathy. Copyright (C) 2012 S. Karger AG, Base

    Serum Heat Shock Protein 27 and Diabetes Complications in the EURODIAB Prospective Complications Study : A Novel Circulating Marker for Diabetic Neuropathy

    Get PDF
    OBJECTIVE—Heat shock protein 27 (HSP27) is a member of the small heat shock protein family of proteins. HSP27 expression is enhanced in target tissues of diabetic microvascular complications, and changes in circulating serum HSP27 levels (sHSP27) have been reported in patients with macrovascular disease. We investigated whether sHSP27 levels were associated with micro- and macrovascular complications in type 1 diabetic patients

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    Evaluation of nine candidate genes in patients with normal tension glaucoma: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal tension glaucoma is a major subtype of glaucoma, associated with intraocular pressures that are within the statistically normal range of the population. Monogenic forms following classical inheritance patterns are rare in this glaucoma subtype. Instead, multigenic inheritance is proposed for the majority of cases. The present study tested common sequence variants in candidate genes for association with normal tension glaucoma in the German population.</p> <p>Methods</p> <p>Ninety-eight SNPs were selected to tag the common genetic variation in nine genes, namely OPTN (optineurin), RDX (radixin), SNX16 (sorting nexin 16), OPA1 (optic atrophy 1), MFN1 (mitofusin 1), MFN2 (mitofusin 2), PARL (presenilin associated, rhomboid-like), SOD2 (superoxide dismutase 2, mitochondrial) and CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1). These SNPs were genotyped in 285 cases and 282 fully evaluated matched controls. Statistical analyses comprised single polymorphism association as well as haplogroup based association testing.</p> <p>Results</p> <p>Results suggested that genetic variation in five of the candidate genes (RDX, SNX16, OPA1, SOD2 and CYP1B1) is unlikely to confer major risk to develop normal tension glaucoma in the German population. In contrast, we observed a trend towards association of single SNPs in OPTN, MFN1, MFN2 and PARL. The SNPs of OPTN, MFN2 and PARL were further analysed by multimarker haplotype-based association testing. We identified a risk haplotype being more frequent in patients and a vice versa situation for the complementary protective haplotype in each of the three genes.</p> <p>Conclusion</p> <p>Common variants of OPTN, PARL, MFN1 and MFN2 should be analysed in other cohorts to confirm their involvement in normal tension glaucoma.</p

    Induction of cancer-specific cytotoxicity towards human prostate and skin cells using quercetin and ultrasound

    Get PDF
    Bioflavonoids, such as quercetin, have recently emerged as a new class of chemotherapeutic drugs for the treatment of various cancer types, but are marred by their low potency and poor selectivity. We report that a short application of low-frequency ultrasound selectively sensitises prostate and skin cancer cells against quercetin. Pretreatment of cells with ultrasound (20 kHz, 2 W cm−2, 60 s) selectively induced cytotoxicity in skin and prostate cancer cells, while having minimal effect on corresponding normal cell lines. About 90% of the viable skin cancer cell population was lost within 48 h after ultrasound-quercetin (50 μM) treatment. Ultrasound reduced the LC50 of quercetin for skin cancer cells by almost 80-fold, while showing no effect on LC50 for nonmalignant skin cells
    corecore