504 research outputs found
Abnormal expansion of naïve B lymphocytes after unrelated cord blood transplantation – a case report
A 33-year-old woman underwent unrelated cord blood transplantation (U-CBT) for myelodysplastic syndrome (MDS)-related secondary AML. She showed impressive increases in the number of CD19(+) B cells in bone marrow and CD19(+)27(−)IgD(+) B cells in peripheral blood from about 1 month to 3 months after U-CBT. The serum level of IL-6 temporarily increased after transplantation, and this increase seemed to be correlated with the expansion of CD19(+) B cells. Although, compared with BMT, little is known about the kinetics of hematological and immunological reconstitution in U-CBT, there was initial B-cell recovery after CBT as some described. This B cell recovery may be associated with a high number of B-cell precursors present in cord blood (CB). The phenomenon of naïve B lymphocyte expansion that we found might be associated with a high number of B-cell precursors present in CB
Ultrafast spin dynamics and critical behavior in half-metallic ferromagnet : Sr_2FeMoO_6
Ultrafast spin dynamics in ferromagnetic half-metallic compound Sr_2FeMoO_6
is investigated by pump-probe measurements of magneto-optical Kerr effect.
Half-metallic nature of this material gives rise to anomalous thermal
insulation between spins and electrons, and allows us to pursue the spin
dynamics from a few to several hundred picoseconds after the optical
excitation. The optically detected magnetization dynamics clearly shows the
crossover from microscopic photoinduced demagnetization to macroscopic critical
behavior with universal power law divergence of relaxation time for wide
dynamical critical region.Comment: 14 pages, 4 figures. Abstract and Figures 1 & 3 are correcte
CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly
Although it is generally accepted that chromatin containing the histone H3 variant CENP-A is an epigenetic mark maintaining centromere identity, the pathways leading to the formation and maintenance of centromere chromatin remain unclear. We previously generated human artificial chromosomes (HACs) whose centromeres contain a synthetic alpha-satellite (alphoid) DNA array containing the tetracycline operator (alphoid(tetO)). We also obtained cell lines bearing the alphoid(tetO) array at ectopic integration sites on chromosomal arms. Here, we have examined the regulation of CENP-A assembly at centromeres as well as de novo assembly on the ectopic arrays by tethering tetracycline repressor (tetR) fusions of substantial centromeric factors and chromatin modifiers. This analysis revealed four classes of factors that influence CENP-A assembly. Interestingly, many kinetochore structural components induced de novo CENP-A assembly at the ectopic site. We showed that these components work by recruiting CENP-C and subsequently recruiting M18BP1. Furthermore, we found that CENP-I can also recruit M18BP1 and, as a consequence, enhances M18BP1 assembly on centromeres in the downstream of CENP-C. Thus, we suggest that CENP-C and CENP-I are key factors connecting kinetochore to CENP-A assembly
Serum macrophage migration inhibitory factor (MIF) levels after allogeneic hematopoietic stem cell transplantation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72178/1/j.1751-553X.2007.01016.x.pd
Saturated Ferromagnetism and Magnetization Deficit in Optimally Annealed (Ga,Mn)As Epilayers
We examine the Mn concentration dependence of the electronic and magnetic
properties of optimally annealed Ga1-xMnxAs epilayers for 1.35% < x < 8.3%. The
Curie temperature (Tc), conductivity, and exchange energy increase with Mn
concentration up to x ~ 0.05, but are almost constant for larger x, with Tc ~
110 K. The ferromagnetic moment per Mn ion decreases monotonically with
increasing x, implying that an increasing fraction of the Mn spins do not
participate in the ferromagnetism. By contrast, the derived domain wall
thickness, an important parameter for device design, remains surprisingly
constant.Comment: 8 pages, 4 figures, submitted for Rapid Communication in Phys Rev
The impact of predation by marine mammals on Patagonian toothfish longline fisheries
Predatory interaction of marine mammals with longline fisheries is observed globally, leading to partial or complete loss of the catch and in some parts of the world to considerable financial loss. Depredation can also create additional unrecorded fishing mortality of a stock and has the potential to introduce bias to stock assessments. Here we aim to characterise depredation in the Patagonian toothfish (Dissostichus eleginoides) fishery around South Georgia focusing on the spatio-temporal component of these interactions. Antarctic fur seals (Arctocephalus gazella), sperm whales (Physeter macrocephalus), and orcas (Orcinus orca) frequently feed on fish hooked on longlines around South Georgia. A third of longlines encounter sperm whales, but loss of catch due to sperm whales is insignificant when compared to that due to orcas, which interact with only 5% of longlines but can take more than half of the catch in some cases. Orca depredation around South Georgia is spatially limited and focused in areas of putative migration routes, and the impact is compounded as a result of the fishery also concentrating in those areas at those times. Understanding the seasonal behaviour of orcas and the spatial and temporal distribution of “depredation hot spots” can reduce marine mammal interactions, will improve assessment and management of the stock and contribute to increased operational efficiency of the fishery. Such information is valuable in the effort to resolve the human-mammal conflict for resources
Targeting Vascular NADPH Oxidase 1 Blocks Tumor Angiogenesis through a PPARα Mediated Mechanism
Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies
- …