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ABSTRACT:

Regioselectivity and overall reactivity in the hydroxylation of a

series of substituted N-benzoyl- and benzenesulfonyl aliphatic and

alicyclic amines with rat liver microsomes were investigated. The

hydroxylation occurred predominantly at the position y to the nitro-

gen atom. para-AIkyl-substituted benzoylamines were hydroxylated

at both the benzylic positions as well as the y-position, whereas

pare-substituted benzenesulfonylamines were hydroxylated mainly

at the benzylic position. The relative overall reactivity of primary,

secondary, and tertiary carbon atoms was about 1 :3:8, and the

contribution of substituents adjoining to the reaction site was nag-

ligible. Benzylic hydroxylation proceeded stereoselectively,

whereas y-hydroxyiation gave optically inactive metabolites; the

inter- and intramolecular isotope effects in the hydroxylation were

I .6 and 7.2, respectively.

Many drugs possess the N-acylamine or N-sulfonylamine moi-

ety in their chemical structure. One of the important processes in

metabolism ofsuch drugs is oxidation at saturated aliphatic carbon

atoms catalyzed by the cytochrome P450 mono-oxygenase system.

When the mono-oxygenation reaction occurred at the a-carbon

atom ofaliphatic groups substituted on a nitrogen atom, formation

of dealkylated amines and aldehydes is observed (1, 2). On the

other hand, mono-oxygenation at the other aliphatic carbon atoms

produces hydroxylated metabolites (3, 4).

We have been interested in the regioselectivity and reactivity in

this hydroxylation of N-acylarnines and N-sulfonylamines, be-

cause such information may contribute to drug design from the

viewpoint of the control of biotransformation and pharmacoki-

netics in vivo. The aim of the present study was to defme the effect

of structure on the overall regioselectivity and reactivity in the

hydroxylation of a series of substituted N-benzoyl- and benzene-

sulfonyl aliphatic and alicycic amines by enzymes of rat liver

microsomes.

Materials and Methods

Spectrometric Analyses. Absorption spectra were measured in methanol
with a Shimadzu spectrophotometer (model UV-2lOA). IR spectra were

recorded in Nujol with a Hitachi spectrophotometer (model 260-30).
Proton-NMR spectra were obtained in CDC1� containing tetramethylsilane

as an internal standard with a Varian spectrometer (model EM-360). Mass
spectra were obtained with a double focusing mass spectrometer (JEOL,
model JMS-OISG) with use ofa direct-insertion probe technique. Specific
rotations were measured in methanol with a digital polarimeter (JASCO,
model DIP-140).

Chromatography. Thin-layer chromatography was carried out on silica
gel plates (60F2M, E. Merck). The solvent system used for development
was acetone/benzene/ether/25% ammonia, 30:20:5:1.5 (v/v). Compounds
were visualized under UV illumination (254 am). Quantitative evaluation

of TLC was carried out with a Zeiss UV Chromatoscanner at the wave-

length of 240 mu.
High-pressure liquid chromatography was carried out with a Shimadzu

liquid chromatograph (model LC-3A), monitored at 240 mu in a 25-cm

x 4.6-mm id. column prepacked with Zorbax ODS (E. I. DuPont).

Chromatography was performed in reverse-phase mode with a solvent

system of methanol/water, 4: 1 (v/v) at a flow rate of 1 ml/min.

Synthesis of Substrates. The structures of N-acylamines and N-sulfon-
ylamines used as substrates are shown in tables 1 and 2. The substrates
were prepared from corresponding amines by a general method (5).
Benzoyl-, p-toluoyl-, p-ethylbenzoyl-, benzenesulfonyl-,p-toluenesulfonyl,

and p-ethylbenzenesulfonyl chloride were purchased commercially.
Heptamethyleneimine was prepared by Beck.mann rearrangement (6)

of cycloheptanone oxime (7) followed by reduction with LiAIH4 (8). 4-

Hexenylamine and phenylpropylamine were prepared by reduction of 4-

hexenonitrile (9) and f3-phenylpropionitrile, respectively, with LiA1H4.

Synthesis ofpiperidine-4-d1 was carried out by reduction (10) of pyridine-

4-d1 (11) with sodium in ethanol. Reduction ofpyridine-d5 with sodium in
ethanol-d1 by the same method gave piperidine-d1o. All other amines were
available commercially. The purity of all substrates was shown to be >98%

by TLC and HPLC.
Spectroscopic data for some substrates were as follows:
II. IR:2930, 1620 (amide), 1440, 1270 cm�; NMR:#{244}7.30 (s, 5, phenyl),

3.50 (broad s, 4, CH2NCH2), 1.62 Ibroad s, 6, (CH2)3]; MS:m/Z 189 (M�),

188, 105.

IV. IR:2930, 1620 (amide), 1420, 1300 cm�; NMR:� 7.35 (s, 5, phenyl),

3.50 (broad s, 4, CH2NCH2), 1.65 Ibroad s, 10, (CH2)5J.

V. IR:2930, 1630 (amide), 1440, 1270 cm’; NMR:8 7.35 (s, 5, phenyl),
4.40-3.95 (m, 2, N-CH�), 3.15-2.60 (m, 2, N-CH,,,), 1.85-1.10 (m, 5,

CH2CHCH2), 0.98 (d, 3, CH3).
VII. NMR:6 7.80-7.05 (m, 5, phenyl), 6.20 (broad s, 1, NH), 4.25-3.55

(m, 1, -NCH), 2.30-0.80 [m, 10, (CH2)5].
VIII. NMR:& 7.35 (s, 5, phenyl), 3.40 (t, 2, NCH2), 3.00 (s, 3, NCH3),

1.85-1.00 Im, 4, (CH2)4, 0.88 (t, 3, CH3).

XII. NMR:#{246}7.85-7.05 (m, 5, phenyl), 5.50-5.15 (m, 2, CH=CH), 3.60-
3.10 (m, 2, NCH2), 2.25-1.30 Im, 7, (CH2)2 and CH3J.

XIII. NMR:� 7.85-7.00 (m, 10, phenyl), 6.35 (broad s, 1, NH), 3.50 (q,
2, N-CH2), 2.73 (t, 2, CH2-phenyl), 2.20-1.65 (m, 2, C-CH2---C).

XIV. NMR:& 7.40-7.05 (m, 4, phenyl), 3.55 (broad s, 4, CH2NCH2), 2.38
(s, 3, CH3), 1.63 [broad s, 6, (CH2)31.

XVIII. NMR:8 7.80-7. 10 (m, 4, phenyl), 3.40-2.85 (m, 4, CH2NCH2),
2.40 (s, 3, CH3), 1.95-1.10 [m, 6, (CH2)31.

XIX. NMR:#{244}8.20-7.25 (m, 4, phenyl), 4.50-4.00 (m, 1, N-CH--CH3),
3.95-3.40 (m, 1, N-CH�---C), 3.30-2.90 (m, 1, N-CHIX--C), 2.78 (q, 2,
CH2-phenyl), 1.55 [broad s, 6, (CH2)31, 1.30 (t, 3, CH3-C-phenyl), 1.10
(d, 3, N-C---CH3).

xx. NMR:6 7.30 (s, 5, phenyl), 3.75-3.25 (m, 4, CH2NCH2), 2.25-1.05
(m, 5, CH2CHCH2); MS:m/z 190 (M’), 189, 188, 105.

XXI. NMR:& 7.30 (s, 5, phenyl); MS:m/z 199 (M�), 198, 197, 105.
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Preparation of Reference Compounds. The reference compounds of the
metabolites of each of N-acyl- and N-sulfonylamines were obtained in
large scale by perfusion of isolated rat livers. The perfusion system and

procedure were almost the same as those reported in a previous paper (12)
except that the bile duct was ligated. Each sample of the perfusates� was
extracted three times with chloroform. The combined chloroform layer
was dried over K2CO3. After removing K2C03 by filtration, chloroform

was evaporated and the residue was subjected to preparative TLC on a

silica gel plate as described above. The metabolites developed on the

chromatogram were detected under UV light (254 nm) and analyzed with

a UV chromatoscanner. The corresponding zone was scraped off the plate
and the metabolite was eluted with methanol.

The isolated metabolites, hydroxyl compounds, were identified by

elemental and spectroscopic analyses and/or they were analyzed after they
were converted to the corresponding keto compounds by oxidation with

chromic oxide (13). The purity of the reference compounds was >94%, as

shown by chromatographic analyses. The structures of the metabolites are
shown in tables 1 and 2; their spectral properties and specific rotations
were as follows:

Ia. IR:3350 (alcohol), 1600 (amide), 1450, 1 100 cm�; NMR:� 7.55-7.30

(m, 5, phenyl), 4.60-4.40 (m, 1, CH-O), 3.80-3.45 (m, 4, CH2NCH2), 2.20-

1.95 (m, 2, CH2); MS:m/z 191 (M�), 190 (M�-l), 105 (C6H5CO).
Ha. lR:3370 (alcohol), 1610 (amide), 1440, 1270, 1070 cm’; NMR:6

7.30 (s, 5, phenyl), 4.20-3.50 (m, 3, N-CH.,� and CH-O), 3.50-3.00 (m,

2, N�CHax), 2.20-1.15 (m, 4, CH2-C-CH2); MS:m/z 205 (M�), 204,
105. Keto derivative oflla. NMR:#{244}7.40 (s, 5, phenyl), 3.85 (t, 4, CH2NCH2),

2.50 (t, 4, CH2COCH2); IR:l7lO (ketone), 1620 cm�.

lila. IR:3350 (alcohol), 1630 (amide), 1420, 1280, 1060 cm’; NMR:5
7.35 (S. 5, phenyl), 4.35-3.10 (m, 5, CH2NCHS and CH-O), 2.15-1.30 Im,
6, (CH2)31; [aI�#{176}D0#{176}(c = 0.037, methanol). Keto derivative ofIlla. NMR:
& 7.35 (s, 5, phenyl), 4.35-3.90 (m, 2, NCH2CO), 3.85-3.35 (m, 2, NCH2),

2.80-2.40 (m, 2, CH2CO), 2.15-1.50 [m, 4, (CH2)2J.
nib. NMR:6 7.35 (s, 5, phenyl), 4.05-3.20(m, 5, CH2NCHS and CH-O),

2.20-1.30 Im, 6, CH2-C-(CH2)21; [a]�#{176}D= 0#{176}(c = 0.029, methanol). Keto

derivative ofilib. NMR:S 7.35 (s, 5, phenyl), 4.05-3.40 (m, 4, CH2NCH2),

2.70 (t, 4, CH2COCH2), 2.10-1.55 (m, 2, CH2).

IVa. NMR:� 7.35 (s, 5, phenyl), 3.95-3.20(m, 5, CH2NCH2 and CH-O),
2.25-1.45 (m, 8, CH2-C--(CH2)3]. Keto derivative ofiVa. NMR:� 7.35 (s,

5, phenyl), 3.85-3.15 (m, 4, CH2NCH2), 2.90-2.30 (m, 4, CH2COCH2),
2.25-1.40 (m, 4, (CH2)21.

IVb. NMR:8 7.30 (s, 5, phenyl), 3.70-3. l0(m, 4, CH2NCH2 and CH-O),
2.65-1.55 [m, 8, (CH2)2-C---(CH2)21. Keto derivative oflVb. NMR:#{244}7.25

(s, 5, phenyl), 3.85-3.05 (m, 4, CH2NCH2), 2.70-1.30 (m, 8,
(CH2)2CO(CH2)2J.

Va. IR:3380 (alcohol), 1600 (amide), 1440, 1280, 1 120, 970 cm�; NMR:

o 7.35 (5, 5, phenyl), 4.l5-3.lO’(m, 4, CH2NCH2), 1.80-1.40 (m, 4,
CH2-C-CH2), 1.25 (s, 3, CH3). NMR spectrum after oxidation of Va
with Cr03 was not changed from that of Va.

Via. NMR:& 7.35 (s, 10, C6H5CO and C-C�H5), 3.70-3. 10 (m, 4,

CH2NCH2), 3.00 (s, 2, CH2), 1.85-0.90 (m, 4, CH2-C-CH2); MS:m/z 295

(M�), 294, 190 (M�-C�H5CO), 156, 148, 105. The oxidation product of
VIa with Cr03 showed an NMR spectrum identical to that of VIa.

Vila. NMR:#{244}7.80-7.05 (m, 5, phenyl), 4.30-3.50 (m, 2, -NCH and
CH-O), 2.30-1.10 [m, 8, CH2-C--(CH2)3J; MS:m/z 219 (M�), 218, 105.

Keto derivative of Vile. NMR:#{244}7.80-7.10 (m, 5, phenyl), 4.50-4.00 (m, 1,
-NCH), 2.80-2.20 (m, 4, CH2COCH2), 2.10-1.20 [m, 4, (CH2)21.

Villa. NMR:6 7.60-7.20 (m, 5, phenyl), 3.95-3. 15 (m, 3, NCH2 and
CH-O), 3.03 (s, 3, NCH3), 2.25-1.55 (m, 2, CH2), 1.35 and 1.20 (d, 3,
CH3); MS:m/z 207 (Mi), 189 (M�-H2O), 162, 149, 136, 105. Keto derivative
of Villa. NMR:& 7.55-7.20 (m, 5, phenyl), 3.70 (t, 2 NCH2), 3.02 (s, 3,

NCH3), 2.80 (t, 2, CH2CO), 2.18 -s, 3, CH3); MS:m/z 205 (M�), 162, 148,

135, lOS.
iXa. NMR:& 7.95-7.20 (m, 5, phenyl), 3.65-3.25 (m, 2, NCH2), 3.40 (t,

2, CH2O), 2.20-1.40 (m, 2, CH2).
Xa. NMR:#{244}7.95-7.25 (m, 5, phenyl), 3.90-3.20 (m, 3, NCH2 and

CH-O), 2.20-1.50 (m, 2, CH2), 1.25 (d, 3, CH3).
Xia. NMR:8 7.90-7.30 (m, 5, phenyl), 3.80-3.40 (m, 2, NCH2), 2.05-1.50

(m, 2, CH2), 1.25 [s, 6, (CH3)21.

XIIa. NMR:& 7.90-7. 10 (m, 5, phenyl), 5.70-5.35 (m, 2, CH’CH), 4.20-

3.25 (m, 3, NCH2 and CH-O), 2.45-1.30 (m, 5, CH2 and CH3); MS:m/z

219 (M�), 201 (M�-H2O), 156, 149, 141, 105.

XIIIa. NMR:#{244} 7.80-7.10 (m, 10, phenyl), 4.90 (t, I, CH-O), 3.95-3.30

(m, 2, NCH2), 2.40-1.70 (m, 2, CH2).

XIVa. NMR:� 7.50-7.15 (m, 4, phenyl), 4.25-3.00 (m, 5, CHSNCHS and

CH-O), 2.40 (5, 3, CH3), 2.25-1.25 (m, 4, CH2-C-CH2).
XIVb. NMR:#{244} 7.50-7.15 (m, 4, phenyl), 4.64 (s, 2, CH2-O), 3.80-3.20

(m, 4, CH2NCH2), 1.65 [broad s, 6, (CH2)3).

XVa. NMR:S 8.10-7.15 (m, 4, phenyl), 4.00-3.20 (m, 3, NCH2 and
CH-O), 3.05 (s, 3, NCH3), 2.80 (q, 2, CH2-phenyl), 2.30-1.60 (m, 2,
CH2), 1.40 and 1.25 (d, 3, O-C-CH3), 1.30 (t, 3, CH3-C-phenyl);

Ia1� 0#{176}(c = 0.020, methanol).
XVb. NMR:� 8.00-7.20 (m, 4, phenyl), 4.95 (q, 1, CH-O), 3.45 (t, 2,

NCH2), 3.05 (5, 3, NCH3), 1.90-1.00 [m, 4, (CH2)2J, 1.50 (d, 3,
CH:3-C-phenyl), 0.90 (t, 3, CH3); [aJ?� -15.8#{176}(c = 0.085, methanol).

XVIa. NMR:#{246}7.95-7.30 (m, 5, phenyl), 4.00-2.80 (m, 5, CH2NCHS and
CH-O), 2.10-1.30 (m, 4, CH2-C--CH2); MS:m/z 241 (M�), 240, 141.

XVIIIa. NMR:tS 7.80-7.15 (m, 4, phenyl), 3.95-2.80 (m, 5, CH2NCHS

and CH-O), 2.43 (s, 3, CH3), 2.05-1.35 (m, 4, CH2-C-CH2). Keto

derivative of XVII1a. NMR:#{244}7.80-7.15 (m, 4, phenyl), 3.40 (t, 4,

CH2NCH2), 2.50 (t, 4, CH2COCH2), 2.43 (s, 3, CH3).
XVIIIb. NMR:� 7.80-7.30 (m, 4, phenyl), 4.73 (5, 2, CH2-O), 3.15-2.80

(m, 4, CH2NCH2), 2.00-1.00 Im, 6, (CH2)3J.
XIXa. NMR:#{244} 8.20-7.20 (m, 4, phenyl), 4.55-4.00 (m, I, N-CHCH3),

3.95-3.40 (m, 2, N-CHC,� and CH-O), 3.35-2.90 (m, 1, N-CH�,), 2.80
(q, 2, CH2-phenyl), 1.80-1.20 (m, 4, CH2-C-CH2), 1.35 (t, 3,

CH3-C-phenyl), 1.05 (d, 3, N-C--CH3); MS:m/z 283 (M�), 282, 169;
1am� = o#{176}(c = 0.033, methanol).

XlXb. NMR:S 8.00-7.20 (m, 4, phenyl), 4.95 (q, 1, CH-O), 4.50-4.00
(m, 1, NCHCH:;), 3.953.30 (m, I, N-CHC,1), 3.15-2.75 (m, 1,
N-CH�X), 1.85-1.10 [m, 6, (CH2)31, 1.55 (d, 3, CH3-C-phenyl), 1.05 (d,

3, N-C-CH4; Ia1i� = -8.8#{176}(c � 0.023, methanol).

Elemental analyses (C, H, N) for compounds ha, lila, IIIb, IVa, IVb,

Va, VIla, XlVa, XIVb, XIXa, and XIXb were within 0.3% ofthe theoretical

values.

Synthesis of N-benzoyl-4-hydroxy-4-d1-piperidine (XXa) was carried

out as follows: The oxidation (13) of4-hydroxypiperidine with Cr03 gave
4-piperidinone, which was converted (5) to XXa by N-benzoylation fol-

lowed by reduction (14) with sodium borodeuteride. NMR:& 7.30 (s, 5,

phenyl), 4.20-3.55 (m, 2, N-CH,,,), 3.55-2.95 (m, 2, N-CH�4, 2.20-1.00
(m, 4, CH2-C-CH2); MS:m/z 206 (M�), 205, 204, 105. Compound XXIa

was prepared by hydroxylation of XXI in the isolated rat liver system

described above.

The reference compounds of N-demethylated metabolites of the sub-
strates VIII and XV were prepared by the reaction of n-butylamine with

the corresponding acyl chlorides (5).

Microsomal Hydroxylatlon. Male Sprague-Dawley rats, weighing 200-
250 g, were used in all experiments. Rats were fed ad lib. on laboratory

chow and tap water before use.

Liver homogenates were prepared in 4 volumes of cold 0.25 M sucrose

solution in a Potter-Elvehjem glass homogenizer with a Teflon pestle.

Liver microsomal fractions were prepared from the homogenates by the

conventional differential ultracentnfugation technique (15). Microsomal
protein was determined by the method of Lowry et a!. (16). The incubation

mixture contained 0.4 mM substrate, 4 mM glucose 6-phosphate. 0.5 mM

NADPH, 5 mM MgC12, 0.5 units of glucose 6-phosphate dehydrogenase,
0.1 M Tris-HC1 buffer (pH 7.4), and an appropriate amount of microsomal

suspension (containing 3.0 mg of protein) in a total volume of I ml.
Incubation was conducted at 37#{176}Cwith shaking. The mixtures were

incubated for 0, 5, 10, 15, 20, and 30 mm to determine the relation among

the amounts of the substrate, metabolites, and reaction time. The reaction
was terminated by the addition of 3 volumes of methanol. After centrifu-

gation at 2000 g for 10 min, 2-mi aliquots of the supernatant fluid were

evaporated to dryness in vacuo. The residue obtained was dissolved into
500 �il of methanol, and 5-�tl aliquots were subjected to HPLC for analysis

of the unchanged substrate and metabolites. The metabolites were char-

acterized by comparative TLC and HPLC with the reference compounds



TABLE 1

Metabolites and rates ofhydroxylation of N-acyl- and N-sulfonylamines

The incubation of substrates with liver microsomes of a rat was carried out three times for each substrate. The overall rates (nmol/mg protein/min)

were corrected for the number of hydrogen atoms at the reaction site (means ± SD).

Substrates Metabolites Rates

nmol/mg
protein/mm/H atom

p...,. OH
C.H.-CO�.N,,J I C.HS-CO-N�J I a 0.12 ±0.03

C�H,-CO-h� II C�H,-CO-N�-OH II a 1.56 ±0.30

C.H�-CO-N�J C.H,_CO-N�$� III a 0.24± 0.08

III .CaH,�CO-NJ�H III b 0.71 ± 0.13

C.H,-CO-N�� C�IHS_CO_N�TJ � a 0.68 ± 0.15

Iv C.HS-CO�N��--OH IV b 0. 18 ± 0.05

C�H,-C0-N��-CH, V C�H,-CO-N��( � .v a 2.50 ± 0.35

C.H,-CO-.N�-CH2CiH, VI C.H,_CO-N�K�2CaH5 VI a 1.21 ± 0.22

C�H�-CO-NH-(TJ VII C.Hs_CO-NH-.Cj#{176} � a 0.90±0.15

,CH, ,CH3
C.H.-CO-N-�..--.�CH, VIII C.H,-CO_N��..CH3 VIII a 0.88 ±0.20

C.H,-CO�NIL�..CH, IX C�H5-CO-NH � j� a 0.21 ± 0.06

C.H.-C0-NH�,...,,-CH, X C.H,_CO_Nl#{231},�,CH3 X a 0.62 ±0.15

C.H,-CO-NH � � C6H,-CO-NH c�3 � a 1.60±0.25
�CH

OH

� XII C.HS_CO�.NI#{231},�,%/CH � a 0.65 ± 0.18

� xiii C�Hs_CO_NH�#.�y�CaHS ‘iii a 0.88±0.21

� XIV p_CH,-C�H�-CO-.N�3�--0H XIV a ‘ 1.25 ± 0.19

p-HOCH2-C.H�-CO-N� XIV b 1.33 ± 0.26

,CH3
p-CaHs-C.H�-CO-N..�....�CH, � �y a 0.90 ±0.11

xv p-CH3CH_C.H4-CO_N�5��CH3 xv b 1.24±0.16

C.Hs_S02-NG XVI C,�H�-SO3-N��-OH XVI a 0.40±0.10

p-cH,-C�H�-SO�-NH3 XVII No metabolites

p-.cII1-C.H�-S03-�j� p-CH,-C.H�-SOa-N��-OII XVIII a 0.31 ± 0.05

XVIII p_.HocHz-C.H�,...S0z-t4fl3 XVIII b 2.55 ±0.32

p_CaHs_C.Hi-SOz_t?T�J p�CzHs_C1H�-SO3_t�TjHMI XIX a 0.30 ± 0.06

XIX p-CH,�H-C.H�-SO3-t�J XIX b 2.07 ± 0.36

478
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TABLE 2

Inter- and Intramolecular isotope effects

The values, determined by th e mass-spectral m ethod, are given as means ± SD (N = 5).

Substrates Metabolites Isotope effects

C6H,�CO�N�KH
D

C6H,_CO_N�<H + c6H,_co_Nr�\:� D
OH ‘-I OH

Intramolecular

7.2±0.8

xx ha XXa

C6h5_CO_N��H
10

II C6H,-CO-(T�-OH II a Intermolecular
1.6±0.2

C6H,�CO�N�� XXI C6H,�CO�N��-OH XXI a

prepared above. The formation of all metabolites showed a linear corre-

. lation with the incubation time for at least 15 min. In order to examine the

formation of glucuronide of the hydroxylated metabolite, the residue

obtained above was dissolved in 0.2 M acetate buffer (pH 4.8) and

incubated with fl-glucuronidase (5000 units/mI) at 37#{176}Cfor 24 hr. The

mixture was subjected to HPLC for analysis of hydrolyzed products.

Measurements of Isotope Effects. The intra- and intermolecular isotope
effects were determined in the microsomal hydroxylation of N-benzoyl-
piperidine-di (XX), and in the microsomal competitive reaction of unla-

beled (II) and d10-Iabeled (XXI) N-benzoylpiperidine, respectively. A total
volume of 500 ml of incubation mixture contained 0.4 mM XX, or 0.2 mM
II and 0.2 mM XXI. After incubation for 10 mm at 37#{176}C,the reaction

mixture was extracted three times with chloroform and dried over Na2SO4.
Solvent was evaporated and residue was subjected to TLC. Unlabeled

and/or labeled 4-hydroxy-N-benzoylpiperidine was isolated from the cor-
responding zone on a silica gel plate. The deuterium content of the
products was determined by the mass-spectral method; ratios of the

deuterated metabolites, XXa/IIa (intramolecular isotope effect) or lla/
XXIa (intermolecular isotope effect), were calculated from the relative

intensities of m/z 206/205 or 205/214 with use of a standard curve

prepared in advance.

Results

Metabolites and Rates of Hydroxylation. The metabolites pro-

duced by incubation of N-acylamines and N-sulfonylamines with

rat liver microsomes, and the overall rates of hydroxylation are

shown in table I.

The hydroxylation ofN-benzoylamines (I-XIII) predominantly

took place at the ‘y-position. N-Benzoylpiperidine (II) was hy-

droxylated about 10 times faster than the pyrrolidine derivative

(I). The rate of hydroxylation at the 7-position of N-benzoythex-

amethyleneimine (III) was about three times larger than that at

the ,8-position, and N-benozylheptamethyleneimine (IV) was hy-

droxylated at the y-position about four times faster than at the &-

position. Also, in the cases of N-benzoylpiperidine derivatives

having substituents at the y-positions (V and VI), the y-position

was still the only reaction site. N-Benzoylcyclohexylamine (VII)

was hydroxylated exclusively at the ‘y-position and a metabolite

hydroxylated at the S-position was not detected.

The hydroxylation of N-benzoyl derivatives of aliphatic amines

was observed to be slower than that of cyclic amines. The relative

overall reactivity of primary, secondary, and tertiary carbon atoms

in a series of N-monoalkylbenzamides (IX, X, and Xi) was about

I :3:8. An olefmic double bond (XII) and a phenyl ring (XIII)

adjoining the reaction site did not contribute to the increment of

the reactivity of the reaction site, suggesting that the rate-deter-

mining step in this hydroxylation did not involve the formation of

a free carbonium ion. N-Benzoylpiperidine . derivatives having

alkyl substituents at the para-position (XIV and XV) were hy-
droxylated at both the y-position and benzylic positions.

The hydroxylation of the -y-position of N-benzenesutfonylpi-

peridine (XVI) was much slower than that of II. Therefore, N-p-

tosylpiperidine (XVIII) and N-(p-ethylbenzenesulfonyl)-2-meth-
ylpiperidine (XIX) were hydroxylated predominantly at the ben-
zylic position. However, p-toluenesulfonarnide (XVII) was not
metabolized at the benzylic position.

The formation of the N-demethylated metabolites and of the

glucuronide was not detected in the microsomal incubation mix-

ture.

Optical Activity and Isotope Effects. Specific rotations ([aJ�)

of some hydroxylated metabolites were: Ills, 0#{176};IIIb, 0#{176};XVa,

0#{176};XVb, - 15.8#{176};XIXa, 0#{176};XIXb, -8.8#{176}.The metabolites hydrox-
ylated at benzylic positions of racemic substrates showed some

optical activity, whereas the hydroxylation at �B- or y-positions of

N-acyl- and N-sulfonylamines gave optically inactive products.

The inter- and intramolecular isotope effects in the hydroxyl-

ation of N-benzoylpiperidine were determined by measuring the

isotope ratios by mass spectrometry. As shown in table 2, the

inter- and intramolecular isotope effects were 1.6 and 7.2, respec-

tively, demonstrating a relatively large difference.

Discussion

Based on the metabolites obtained, the hydroxylation of the N-

substituted benzoylamines I-XIII occurred predominantly at the

y-position, and neither aromatic hydroxylation nor N-dealkylation

was detected. The regioselectivity at the ‘y-position observed in

this study was higher than that in the similar microbiological

hydroxylation (17, 18). In addition, the metabolites formed by rat

liver enzymes were only hydroxylated products, and keto deriva-

tives were not detected, whereas the oxygenation with microor-

ganisms gave a mixture of hydroxyl and ketonic products. Chior-

propamide, 3-(p-chlorobenzenesulfonyl)-l-n-propylurea, a hypo-

glycemic agent, has been reported to be hydroxylated at the ,8-

and ‘y-positions in rats in vivo (19) showing the similar observations

obtained in this study.

N-Benzoylcyclohexylamine (VII) was hydroxylated exclusively

at the y-position with rat liver microsomes, whereas the 6-position

was also hydroxylated in the microbiological transformation (14).

The cyclohexylamine moiety in amantadine (20), an antiparkin-

sonism drug, and glibenclamide (21), an antidiabetic agent, was

hydroxylated only at the ‘y-position in rats.

It was observed in this study that XIV and XV were hydroxyl-
ated at both the y-position and benzylic positions to yield XIVa,

XVa and XIVb, XVb, respectively, whereas XVIII and XIX were
hydroxylated predominantly at the benzylic position to give

XVIIIb andXIXb. Tolazamide, l-(hexahydroazepin- l-yl)-3-p-to-
lylsulfonylurea, a hypoglycemic agent, was hydroxylated exclu-

sively at the benzylic position in rats (22). The biotransformation

of the other para-substituted phenylsulfonylurca derivatives such

as tolbutamide, having tosyl and n-butylarnino moieties, occurred

at the benzylic position, but the hydroxylation at the y-position

was not observed in rats or in humans (23).
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It is worth mentioning that there is no significant difference of

regioselectivity and stereoselectivity between the metabolic hy-

droxylation of drugs and of the substrates used in this study.

Therefore, it can be noted that the metabolic studies in vitro on

substrates having simple structures are useful tools to discuss the

biotransformation of drugs having complicated structures.

In the next place, in order to get some informations on the

mechanism of the hydroxylation with liver microsomes, stereose-

lectivity and isotope effect in this hydroxylation were studied. The

metabolites hydroxylated at fi- or y-positions, i.e. lila, IlIb, XVa,

and XIXa, showed no optical activity, whereas the benzylic hy-

droxylation (XVb and XIXb) was found to give optically active

products, suggesting a difference of pattern of reaction between

fi- or y-hydroxylation and benzylic hydroxylation. The y-hydrox-

ylated metabolite of tolazamide isolated from human urine also

showed no optical activity (22). The inter- and intramolecular

isotope effects in the hydroxylation at the y-position were 1.6 and

7.2, respectively.

As for the mechanism of the rate-determining step, homolytic

hydrogen abstraction has been proposed for aliphatic hydroxyl-

ation (24-25), though carbene-like oxygen insertion has been

accepted as an alternative mechanism (3). According to a general

concept of enzymatic reaction, however, the enzymatic reaction is

usually multistage and the character of the rate-determining step

often masked by nature of the overall reaction steps. On the other

hand, the observed large intramolecular isotope effect and the

optical nonactivity of y-hydroxylated metabolites may indicate

that homolytic hydrogen abstraction by a relatively less reactive

radical species is one of the possible mechanisms of the rate

determining step of the hydroxylation at a saturated carbon atom.
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