813 research outputs found
Violator Spaces: Structure and Algorithms
Sharir and Welzl introduced an abstract framework for optimization problems,
called LP-type problems or also generalized linear programming problems, which
proved useful in algorithm design. We define a new, and as we believe, simpler
and more natural framework: violator spaces, which constitute a proper
generalization of LP-type problems. We show that Clarkson's randomized
algorithms for low-dimensional linear programming work in the context of
violator spaces. For example, in this way we obtain the fastest known algorithm
for the P-matrix generalized linear complementarity problem with a constant
number of blocks. We also give two new characterizations of LP-type problems:
they are equivalent to acyclic violator spaces, as well as to concrete LP-type
problems (informally, the constraints in a concrete LP-type problem are subsets
of a linearly ordered ground set, and the value of a set of constraints is the
minimum of its intersection).Comment: 28 pages, 5 figures, extended abstract was presented at ESA 2006;
author spelling fixe
Towards a Graphene-Based Quantum Impedance Standard
Precision measurements of the quantum Hall resistance with alternating
current (ac) in the kHz range were performed on epitaxial graphene in order to
assess its suitability as a quantum standard of impedance. The quantum Hall
plateaus measured with alternating current were found to be flat within one
part in 10^7. This is much better than for plain GaAs quantum Hall devices and
shows that the magnetic-flux-dependent capacitive ac losses of the graphene
device are less critical. The observed frequency dependence of about
-8x10^-8/kHz is comparable in absolute value to the positive frequency
dependence of plain GaAs devices, but the negative sign is attributed to stray
capacitances which we believe can be minimized by a careful design of the
graphene device. Further improvements thus may lead to a simpler and more
user-friendly quantum standard for both resistance and impedance
Base sequence dependent sliding of proteins on DNA
The possibility that the sliding motion of proteins on DNA is influenced by
the base sequence through a base pair reading interaction, is considered.
Referring to the case of the T7 RNA-polymerase, we show that the protein should
follow a noise-influenced sequence-dependent motion which deviate from the
standard random walk usually assumed. The general validity and the implications
of the results are discussed.Comment: 12 pages, 3 figure
Artificial Intelligence: An Interprofessional Perspective on Implications for Geriatric Mental Health Research and Care
Artificial intelligence (AI) in healthcare aims to learn patterns in large multimodal datasets within and across individuals. These patterns may either improve understanding of current clinical status or predict a future outcome. AI holds the potential to revolutionize geriatric mental health care and research by supporting diagnosis, treatment, and clinical decision-making. However, much of this momentum is driven by data and computer scientists and engineers and runs the risk of being disconnected from pragmatic issues in clinical practice. This interprofessional perspective bridges the experiences of clinical scientists and data science. We provide a brief overview of AI with the main focus on possible applications and challenges of using AI-based approaches for research and clinical care in geriatric mental health. We suggest future AI applications in geriatric mental health consider pragmatic considerations of clinical practice, methodological differences between data and clinical science, and address issues of ethics, privacy, and trust
Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity
<p>Abstract</p> <p>Background</p> <p>Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G<sub>0</sub>), the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6. Ringer's lactate solution (RLS) has been shown to increase serum TNF-α and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an alternative metabolic fuel to meet the higher energy demand by liver regeneration. Therefore, we tested whether RLS therapy improves liver recovery after APAP overdose.</p> <p>Methods</p> <p>C57BL/6 male mice were intraperitoneally injected with a single dose of APAP (300 mg/kg dissolved in 1 mL sterile saline). Following 2 hrs of APAP challenge, the mice were given 1 mL RLS or Saline treatment every 12 hours for a total of 72 hours.</p> <p>Results</p> <p>72 hrs after APAP challenge, compared to saline-treated group, RLS treatment significantly lowered serum transaminases (ALT/AST) and improved liver recovery seen in histopathology. This beneficial effect was associated with increased hepatic tissue TNF-α concentration, enhanced hepatic NF-ÎșB DNA binding and increased expression of cell cycle protein cyclin D1, three important factors in liver regeneration.</p> <p>Conclusion</p> <p>RLS improves liver recovery from APAP hepatotoxicity.</p
The AllWISE Motion Survey, Part 2
We use the AllWISE Data Release to continue our search for WISE-detected
motions. In this paper, we publish another 27,846 motion objects, bringing the
total number to 48,000 when objects found during our original AllWISE motion
survey are included. We use this list, along with the lists of confirmed
WISE-based motion objects from the recent papers by Luhman and by Schneider et
al. and candidate motion objects from the recent paper by Gagne et al. to
search for widely separated, common-proper-motion systems. We identify 1,039
such candidate systems. All 48,000 objects are further analyzed using
color-color and color-mag plots to provide possible characterizations prior to
spectroscopic follow-up. We present spectra of 172 of these, supplemented with
new spectra of 23 comparison objects from the literature, and provide
classifications and physical interpretations of interesting sources. Highlights
include: (1) the identification of three G/K dwarfs that can be used as
standard candles to study clumpiness and grain size in nearby molecular clouds
because these objects are currently moving behind the clouds, (2) the
confirmation/discovery of several M, L, and T dwarfs and one white dwarf whose
spectrophotometric distance estimates place them 5-20 pc from the Sun, (3) the
suggestion that the Na 'D' line be used as a diagnostic tool for interpreting
and classifying metal-poor late-M and L dwarfs, (4) the recognition of a triple
system including a carbon dwarf and late-M subdwarf, for which model fits of
the late-M subdwarf (giving [Fe/H] ~ -1.0) provide a measured metallicity for
the carbon star, and (5) a possible 24-pc-distant K5 dwarf + peculiar red L5
system with an apparent physical separation of 0.1 pc.Comment: 62 pages with 80 figures, accepted for publication in The
Astrophysical Journal Supplement Series, 23 Mar 2016; second version fixes a
few small typos and corrects the footnotes for Table
The Viscous Nonlinear Dynamics of Twist and Writhe
Exploiting the "natural" frame of space curves, we formulate an intrinsic
dynamics of twisted elastic filaments in viscous fluids. A pair of coupled
nonlinear equations describing the temporal evolution of the filament's complex
curvature and twist density embodies the dynamic interplay of twist and writhe.
These are used to illustrate a novel nonlinear phenomenon: ``geometric
untwisting" of open filaments, whereby twisting strains relax through a
transient writhing instability without performing axial rotation. This may
explain certain experimentally observed motions of fibers of the bacterium B.
subtilis [N.H. Mendelson, et al., J. Bacteriol. 177, 7060 (1995)].Comment: 9 pages, 4 figure
Microbial activity affects sulphur in biogenic aragonite
Carbonates that exhibit obvious diagenetic alteration are usually excluded as archives in palaeoenvironmental studies. However, the potential impact of microbial alteration during early diagenesis is still poorly explored. To investigate the sensitivity of sulphur concentration, distribution, oxidation state and isotopic composition in marine aragonite to microbial alteration, Arctica islandica bivalves and Porites sp. corals were experimentally exposed to anaerobic microbial activity. The anoxic incubation media included a benthic bacterial strain Shewanella sediminis and a natural anoxic sediment slurry with a natural microbial community of unknown species. Combined fluorescence microscopy and synchrotronâbased analysis of the sulphur distribution and oxidation state enabled a comparison of organic matter and sulphur content in the two materials. Results revealed a higher proportion of reduced sulphur species and locally stronger fluorescence within the pristine bivalve shell compared to the pristine coral skeleton. Within the pristine bivalve specimen, reduced sulphur was enriched in layers along the inner shell margin. After incubation in the anoxic sediment slurry, this region revealed rustâbrown staining and a patchy S2â distribution pattern rather than S2ââlayers. Another effect on sulphur distribution was rustâbrown coloured fibres along one growth line, revealing a locally higher proportion of sulphur. The ÎŽ34S value of carbonateâassociated sulphate remained largely unaffected by both incubation media, but a lower ÎŽ34S value of waterâsoluble sulphate reflected the degradation of insoluble organic matter by microbes in both experiments. No significant alteration was detected in the coral samples exposed to microbial alteration. The data clearly identified a distinct sensitivity of organically bound sulphur in biogenic aragonite to microbial alteration even when âtraditionalâ geochemical proxies such as ÎŽ18OCARB or ÎŽ13CCARB in the carbonate didnât show any effect. Differences in the intensity of microbial alteration documented are likely due to inherent variations in the concentration and nature of original organic compositions in the samples
Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges
A new traceability chain for the derivation of the farad from dc quantum Hall
effect has been implemented at INRIM. Main components of the chain are two new
coaxial transformer bridges: a resistance ratio bridge, and a quadrature
bridge, both operating at 1541 Hz. The bridges are energized and controlled
with a polyphase direct-digital-synthesizer, which permits to achieve both main
and auxiliary equilibria in an automated way; the bridges and do not include
any variable inductive divider or variable impedance box. The relative
uncertainty in the realization of the farad, at the level of 1000 pF, is
estimated to be 64E-9. A first verification of the realization is given by a
comparison with the maintained national capacitance standard, where an
agreement between measurements within their relative combined uncertainty of
420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table
Electron Counting Capacitance Standard with an improved five-junction R-pump
The Electron Counting Capacitance Standard currently pursued at PTB aims to
close the Quantum Metrological Triangle with a final precision of a few parts
in 10^7. This paper reports the considerable progress recently achieved with a
new generation of single-electron tunnelling devices. A five-junction R-pump
was operated with a relative charge transfer error of five electrons in 10^7,
and was used to successfully perform single-electron charging of a cryogenic
capacitor. The preliminary result for the single-electron charge quantum has an
uncertainty of less than two parts in 10^6 and is consistent with the value of
the elementary charge.Comment: 16 pages, 9 figures, 1 tabl
- âŠ