1,852 research outputs found

    Seizure Detection, Seizure Prediction, and Closed-Loop Warning Systems in Epilepsy

    Get PDF
    Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy

    Interactions between visceral afferent signaling and stimulus processing

    Get PDF
    Visceral afferent signals to the brain influence thoughts, feelings and behaviour. Here we highlight the findings of a set of empirical investigations in humans concerning body-mind interaction that focus on how feedback from states of autonomic arousal shapes cognition and emotion. There is a longstanding debate regarding the contribution of the body, to mental processes. Recent theoretical models broadly acknowledge the role of (autonomically mediated) physiological arousal to emotional, social and motivational behaviours, yet the underlying mechanisms are only partially characterized. Neuroimaging is overcoming this shortfall; first, by demonstrating correlations between autonomic change and discrete patterns of evoked, and task- independent, neural activity; second, by mapping the central consequences of clinical perturbations in autonomic response and; third, by probing how dynamic fluctuations in peripheral autonomic state are integrated with perceptual, cognitive and emotional processes. Building on the notion that an important source of the brain’s representation of physiological arousal is derived from afferent information from arterial baroreceptors, we have exploited the phasic nature of these signals to show their differential contribution to the processing of emotionally-salient stimuli. This recent work highlights the facilitation at neural and behavioral levels of fear and threat processing that contrasts with the more established observations of the inhibition of central pain processing during baroreceptors activation. The implications of this body-brain-mind axis are discussed

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets

    Usage of Light Emitting Diodes (LEDs) for improved satellite tracking

    Get PDF
    With the increasing number of satellite launches, especially in Low Earth Orbit (LEO), optical tracking can offer a convenient enhancement of tracking precision and availability. Spaceborne active illumination devices, such as LED payloads, can offer a significant improvement to optical observations, extending the observability interval to the whole eclipse time and performing optimized flash sequences for identification, orbit determination, attitude reconstruction or low data rate communication. The main features of LED panels for optical tracking mounted on small satellites platforms (and with particular regards to nano-satellite platforms) are outlined in this paper, along with the description of the design drivers. The analysis of the performance is referred to Sun-Synchronous (at 700 km of altitude) and International Space Station (400 km) orbits, while the ground segment and the optical link budget reference design relies on a standard university space debris observation station architecture. The paper also outlines the advantages of using different observation techniques and the variety of flashing patterns. The LEDSAT 1U CubeSat, aiming at demonstrating the effectiveness of an LED-based payload for observation and tracking, is used as a study case for examples of the LED payloads and related operations that are reported and described in this paper

    An Intense Gamma-Ray Flare of PKS1622-297

    Full text link
    We report the observation by the Compton Gamma Ray Observatory of a spectacular flare of radio source PKS 1622-297. A peak flux of 17E-6 cm^-2 s^-1 (E > 100 MeV) was observed. The corresponding isotropic luminosity is 2.9E49 erg/s. We find that PKS 1622-297 exhibits gamma-ray intra-day variability. A flux increase by a factor of at least 3.6 was observed to occur in less than 7.1 hours (with 99% confidence). Assuming an exponential rise, the corresponding doubling time is less than 3.8 hours. A significant flux decrease by a factor of ~2 in 9.7 hours was also observed. Without beaming, the rapid flux change and large isotropic luminosity are inconsistent with the Elliot-Shapiro condition (assuming that gas accretion is the immediate source of power for the gamma-rays). This inconsistency suggests that the gamma-ray emission is beamed. A minimum Doppler factor of 8.1 is implied by the observed lack of pair-production opacity (assuming x-rays are emitted co-spatially with the gamma-rays). Simultaneous observation by EGRET and OSSE finds a spectrum adequately fit by a power law with photon index of -1.9. Although the significance is not sufficient to establish this beyond doubt, the high-energy gamma-ray spectrum appears to evolve from hard to soft as a flare progresses.Comment: 14 pages, 4 figures, 1 tabl
    • …
    corecore