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Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management.
Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing
more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated sei-
zure detection and prediction require algorithms which employ feature computation and subsequent classifica-
tion. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial
EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures.
To date, it is unclearwhich combination of detection technologies yields the best results, and approachesmay ul-
timately need to be individualized. This review presents an overview of seizure detection and related prediction
methods and discusses their potential uses in closed-loop warning systems in epilepsy.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Epilepsy is one of the most common neurological disorders and oc-
curs with an incidence of 68.8/100,000 person-years [1]. The age-
adjusted incidence of epilepsy is estimated to be 44/100,000 person-
years [2]. Despite the introduction of new antiepileptic drugs in the

last decades, one-third of people with epilepsy continue to have sei-
zures despite treatment [3]. However, evenwhen seizures are well con-
trolled, self-reported quality of life is significantly lowered by the
anxiety associated with the unpredictable nature of seizures and the
consequences therefrom [4].

Some of the difficulties in managing treatment-refractory epilep-
sy can be ameliorated by the ability to detect clinical seizures. This
information might be useful both in developing accurate seizure di-
aries and in providing therapies during times of greatest seizure sus-
ceptibility. The ability to rapidly and accurately detect seizures could
promote therapies aimed at rapidly treating seizures. The capability
to detect seizures early and anticipate their onset prior to presenta-
tion would provide even greater advantages. These early detection
and prediction systems might be able to abort seizures through
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Table 1
Selected seizure detection systems.

Author, year Measuring device/seizures detected Detection algorithm Results

Electroencephalography/electrocorticography
Webber, 1996 [5] EEG (24–40 channels)/seizures not stated ANN classification system SEN of 76% and FPR of 1 event/h
Pradhan, 1996 [6] EEG (8 channels)/seizures not stated Wavelet transformation feature acquisition, ANN classification SEN of 97% and SPEC of 89.5%
Gabor, 1998 [7] EEG (8 channels)/seizures not stated Self-organizing neural network with unsupervised training SEN of 92.8% and FPR of 1.35 events/h
Wilson, 2004 [8] EEG (8–32 channels)/seizures not stated Combined algorithm (utilizes matching pursuit, small neural networks,

and clustering algorithm)
SEN of 76% and FPR of 0.11 events/h

Wilson, 2005 [9] EEG (single channel selected)/CPS, secondary GS and primary GS Used a trained probabilistic neural network for rapid detection of
seizures

SEN of 89% and FPR of 0.56 events/h

Alkan, 2005 [10] EEG (4 channels)/absence seizures Comparison of linear regression systems and ANN classification systems ANN-based systems found to be greater. ANN-based system
provided greater accuracy compared with linear regression

D'Alessandro, 2005 [11] Intracranial EEG/seizures not stated Genetic algorithm for signal processing, probabilistic neural network
for classification

100% prediction of seizures within 10 min prior to onset

Arabi, 2006 [12] EEG/neonatal seizures Used linear correlation feature selectionmethods and back propagation
neural network for classification. Used in detection of neonatal seizures

SEN of 91% and FPR of 1.17 events/h

Casson, 2007 [13] Ambulatory EEG Continuous wavelet transform Over 90% of spike detection
Chan, 2008 [14] Intracranial EEG/PS SVM system SEN of 80–98%, FPR of 38%
Netoff, 2009 [15] EEG (6 channels)/PS Cost-sensitive SVM system SEN of 77.8%, no false positives detected
Chua, 2009 [16] EEG/PS Data processing by higher-order spectra analysis followed by

classification by the Gaussian mixture model or SVM
Accuracy of 92–93%

Mirowski, 2009 [17] EEG/PS Variable feature extraction methods used followed by patient-specific
machine learning-based classifiers

Convolutional networks combined with wavelet coherence yielded
sensitivity of 71% and no false positives

Sorensen, 2010 [18] EEG (3 channels)/GTCS, SPS, CPS Features classified bymatching pursuit algorithm and classified by SVM SEN of 78–100 and FPR of 0.16–5.31 events/h
Chisci, 2010 [19] EEG (multichannel)/focal seizures Least-squares parameter estimator for extraction followed by SVM

classification
SEN of 100%

Peterson, 2011 [20] EEG (single channel)/absence seizures Wavelet transform followed by SVM classification used to detect absence
seizures using single-channel EEG

SEN of 99.1% and PPV of 94.8%

Temko, 2011 [21] EEG (8 bipolar)/neonatal seizures Fast Fourier transform used for feature extraction followed by SVM
classification. Used to detect neonatal seizures

SEN adjustable, with 89% SEN yielding one false detection/h

Acharya, 2011 [22] EEG/seizures not stated Higher-order spectra-based feature extraction followed by SVM Detection accuracy of 98.5%
Kharbouch, 2011 [23] Intracranial EEG/focal epilepsy Multistep feature extraction system followed by SVM classifier,

individualized for patients
Detected 97% of seizures, FPR of 0.6 events/day

Liu, 2012 [24] Intracranial EEG/GTCS, SPS, CPS Wavelet decomposition-based feature extraction followed by SVM
classification

SEN of 94.5% and SPEC of 95.3%

Xie, 2012 [25] EEG (6 channels)/focal seizures, others not stated Feature extraction bywavelet-based sparse functional linearmodel and
1-NN classification method

Has 99–100% classification accuracy

Direito, 2012 [26] EEG (multichannel)/focal seizures Markovmodeling classification system. Identified four states— preictal,
ictal, postictal, and interictal

Point-by-point accuracy of 89.3%

Rabbi, 2012 [27] Intracranial EEG/GTCS, SPS, CPS Used fuzzy algorithms for feature extraction for classification SEN of 95.8% and FPR of 0.26 events/h

Implanted advisory system
Cook, 2013 [28] Intracranial implanted device/partial-onset seizure Cluster computing system at NeuroVista (one algorithm for each patient) SEN of 65%–100%

Electromyography
Conradsen, 2010 [29] Features extracted from surface electromyography acceleration

and angular velocity/seizure-like movements performed by healthy
volunteers

Classification based on SVM SEN of 91–100% and SPEC of 100%

Conradsen, 2012 [30] Electromyography and motion sensor features/motor seizures,
seizure-like movements performed by healthy volunteers

Discrete wavelet transformation/wavelet packet transform techniques
used to extract features. SVM classification system

Evaluated healthy subjects simulating seizures. SEN of 91–100% and
SPEC of 100%
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Electrocardiogram
Greene, 2007 [31] ECG/newborn seizures Processing of 41 heart timing variables SEN of 62.2% and SPEC of 71.8%
Malarvili, 2009 [32] ECG/newborn seizures Utilizes heart rate from ECG and classifies using statistical methods

seizures from nonseizure events
SEN of 85.7% and SPEC of 84.6%

Jeppesen, 2010 [33] ECG/temporal lobe epilepsy Time–frequency features from ECG extracted followed by wrapper-
based feature selection technique.

Reciprocal power peaks from 10 s preictal to 24 s postictal were
2.96–93.63 times higher than in control

Doyle, 2010 [34] ECG/newborn seizures SVM-based classifier using features extracted fromheart rate variability SEN of 60% and SPEC of 60%

Accelerometry
Nijsen, 2005 [35] 3-D accelerometers used on both legs and arms and on the

chest/myoclonic, tonic, tonic–clonic, startle, SPS, CPS
Patterns for simple motor seizures ascertained based on visual
inspection of data

Typical seizure patterns were noted in 95% of motor seizures

Nijsen, 2007 [36] 3-D accelerometers used on both legs and arms and on the
chest/myoclonic, clonic, and tonic seizures

Use of linear threshold function to determine the presence of nocturnal
seizures

SPEC of 100% and PPV of 52–93%

Cuppens, 2009 [37] 3-D accelerometers on wrists and ankles/frontal lobe seizures
with motor manifestations

Algorithm uses standard deviations of moving epochs and uses moving
average filter to detect nocturnal frontal lobe seizures

SEN of 91.7% and SPEC of 83.9%

Nijsen, 2010 [38] 3-D accelerometers and video-EEG used on both legs and arms
and on the chest/myoclonic, clonic, tonic seizures, and CPS

Short-time Fourier transform, Wigner distribution, continuous wavelet
transform, and model-based matched wavelet transform

Short-time Fourier transform: SEN of 71% and PPV of 16%. Using
Wigner distribution: SEN of 34% and PPV of 15%. Using continuous
wavelet transform: SEN of 80% and PPV of 16%. Using model-based
matched wavelet transform: SEN of 80% and PPV of 15%

Lockman, 2011 [39] Single 3-D accelerometer worn on the wrist/tonic–clonic seizures Pattern recognition algorithm detects seizure events Detects tonic–clonic seizures. SEN of 87.5%. 204 false positives
Kramer, 2011 [40] Single 3-D accelerometer worn on the wrist/tonic, GTCS Time domain- and frequency domain-based algorithm Identified 91% of clonic or tonic, tonic–clonic, or secondarily

generalized seizures
Van de Vel, 2012 [41] One 3-D accelerometer on each limb/hypermotor seizures Movement detection system followed by feature extraction SEN of 96% and PPV of 58%
Dalton, 2012 [42] Accelerometer-based kinematic sensor/DTW algorithm Motor patterns of epileptic seizures SEN of 91% and SPEC of 84%
Beniczky, 2013 [43] Single 3-D accelerometer worn on the wrist/GTCS Time domain- and frequency domain-based algorithm SEN of 91% and FPR of 0.2 events/day

Video detection systems
Karayinnis, 2004 [44] Video segments of seizures/neonatal myoclonic and focal clonic

seizures
Neural network model SEN N 90%, SPEC N 95%

Cuppens, 2010 [45] Epilepsy monitoring unit-derived video segments/GTCS Optical flow algorithm Detection of seizures from video recordings using trial in pediatric
nighttime seizures

Cuppens, 2012 [46] Nocturnal video Spatiotemporal interest points SEN of 75% and PPV of 85%
Lu, 2013 [42] Quantify limb movements Gaussian mixture models Performance compared with EEG

Mattress sensor
Carlson, 2009 [47] Microphone under mattress/tonic–clonic seizures Activated by tapping noises/bedspring noises. Designed to detect

nocturnal seizures
SEN of 62.5% and SPEC of 90.4%

Narechania, 2011 [48] Quasi-piezoelectric sensor/tonic–clonic seizures Activated by rhythmic movements Detected 80% of seizures, 14 false alarms occurred during periods of
patient wakefulness

Audio classification
Bruijne, 2009 [49] Signal enhancement, audio analysis, and classification Seizure classification based on temporal and spectral sounds Good performance for sounds during and after seizures

Seizure-alert dogs
Strong, 1999 [50] Trained dog Elicits behaviors (barking, pawing) minutes prior to seizures Anecdotal evidence of seizure giving warnings from 15 to 45 min

prior to seizure onset

AAN: artificial neural networks; CPS: complex partial seizures; GS: generalized seizures; GTCS: generalized tonic–clonic seizures; PS: partial seizures; SPS: simple partial seizures; SVM: support vectormachine; SEN: sensitivity; SPEC: specificity; FPR:
false-positive rate; PPV: positive predictive value.
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targeted therapies. Such systems would also be able to prevent acci-
dents and limit injury.

This article describes currently available detection and prediction
systems for epileptic seizures. We explore the potential application of
such systems in ambulatory monitoring and closed-loop models for in-
dividual patient care. We also describe how population-based predic-
tion algorithms may be used to formulate prediction models to
anticipate seizures.

2. Seizure detection

Seizure detection systems are capable of detecting ongoing seizures
and provide clinicians with detailed seizure data useful for themanage-
ment of epilepsy. Closed-loop systems built around seizure detection
might also be able to provide rapid therapy in response to seizures
early in their clinical onset, thereby limiting the complications or poten-
tially arresting the spread of seizures.

A seizure detection system must be able to determine the presence
or absence of ongoing seizures. A variety of algorithms of different bio-
metric signals can do this even prior to clinical onset of a seizure
(Table 1). All seizure detection algorithms involve two main steps.
First, appropriate quantitative values or features, such as EEG features,
movements, or other biomarkers, must be computed from the data. Sec-
ond, a threshold ormodel-based criteriamust be applied to the features
to determine the presence or absence of a seizure. This second step,
called classification, might be as simple as thresholding a value or
might require models derived from modern machine learning algo-
rithms [51,52]. Features are computed in a manner that is generally a
compromise between the need for speed and the need for detection
accuracy and might be preceded by a preprocessing or filtering step
(Table 2; for further details, please refer to supplementary document).
Derivation of a model frommachine learning algorithms is done during
a training phase and involves three substeps: preprocessing or filtering,
feature computation, and feature reduction or feature extraction
(Fig. 1). Each of these processes is a field of active, specialized research

and will not be elaborated further here [66]. Derivation of appropriate
features for seizure detection depends on the physiological data that
are measured. It is helpful to keep in mind that the training or super-
vised learning phase involves the following steps that are carried out
separately on previously recorded data from a large population:

1. Feature computation

a. Preprocessing or filtering
b. Feature computation
c. Feature reduction or extraction

2. Training or supervised learning: During this step, model parameters
that determine criteria for the presence or absence of seizures are
computed. The criteriamight apply to awhole population of patients,
to specific subpopulations, or to individual patients. This step in-
volves considerable computation and is performed offline before im-
plementation for real-time seizure detection. It can also be updated
as more data are collected.

Real-time classification requires computation of signal features,
followed by computation of the classification outcome from the previ-
ously learnedmodel. This stepmust be optimized for speed to be useful.
Some of the most common algorithms for each of these steps are
discussed below in the setting of EEG recordings.

2.1. EEG and electrocorticography

Measurements of brain electrical activity with EEG have long been
one of the most valuable sources of information for epilepsy research
and diagnosis, yet this rich resource may still be underutilized. Electro-
encephalography carries a large amount of complex information that is
valuable in detecting ongoing seizures. Automated methods of EEG
analysis are emerging from the concept that normal brain dynamics,
which involve limited, transient synchronization of disorganized neural
activity, evolve into a persistent, highly synchronized state that incorpo-
rates large regions of the brain during epileptic seizures [67].While EEG
provides a great wealth of data that can be interpreted via automated

Table 2
Analytic methods for seizure detection.

Feature computation

Line length Fast algorithm to compute the sum of vertical change time windows. Sensitive to variations in EEG signal, amplitude, and frequency [53].
Frequency or Fourier analysis Identify frequencies related to seizure activity. Thismethod has a training phase involving EEG examination to determine themagnitude ratio

and time length associated with seizures. Can be tailored to suit individual patient profiles [54].
Wavelet transformations A filtering process that can be used to decompose time series into components [55]. A wavelet decomposition results in components

at multiple levels of resolution (computational microscopes) [56]. This system has been evaluated in both intracranial and surface
EEG recordings [13,57,58].

Principal component analysis (PCA) Identify the set of principal components using orthogonal transformation and sorted by variance. Real-time or “dynamic” PCA is computing
principle components quickly in sliding window of features [59].

Higher-order spectra analysis Similar manner to spectral decomposition to compute features of the EEG signal. High predictive value in the identification of normal, interictal,
and ictal EEGs [22].

Classification methods

Support vector machines Amethod that includes data transformed by a nonlinear kernel function to find complex relations among features separating classes of interest.
Variations have been developed for classifying different types of ictal events from within patients [60].

Artificial neural networks Originally inspired bymodels that attempted to emulate biological neural networks [51,61]. Linear features include amplitude, slope, curvature,
rhythmicity, and frequency of EEG components [5].

Fuzzy logic models Many-valued logicmethodwhich incorporatesmultiple variables and gives output as a gradient rather than a simple binary function. Initially
designed tomimic human control logic. Relies on empirically based algorithms. Widely used in systems engineering and is finding new uses
in many medical applications [62–64].

Markov modeling A prediction or classification algorithmused to predict the transition fromone state to another, such as preictal to ictal. In the learning phase, a
time sequence of features is computed for the EEG signal, and the Markov model is built [65].

Learning system

AutoLearn system It is software that uses an artificial neural network classifier with spectral features to detect seizures. The use of an individualized
machine learning system used to overcome interindividual and intraindividual heterogeneity in focal seizures resulted in a 97%
detection rate [23].
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methods, it can be difficult for patients to wear the EEG electrodes for
prolonged periods of time, and prolonged surface electrode recordings
may become difficult to read because of increasing impedance. Addi-
tionally, some patientsmaydevelop skin abrasions due to prolonged ex-
posure to surface electrodes.

2.2. ECG

Epileptic seizures can cause short-term and long-termheart rate dis-
turbances [53]. Changes in heart rate and conduction have been shown
to be important autonomic biomarkers in epilepsy, as well as play a piv-
otal role in SUDEP pathophysiology. Tachycardia can occur prior to and
during complex partial and tonic–clonic seizures, whichmight be relat-
ed to discharges in the right insular cortex [68]. An evaluation of ECG
changes in a cohort of 58 patients found that tachycardia occurred dur-
ing the seizures in more than 85% of patients [69]. Ictal tachycardia is
particularly noted in cases of generalized tonic–clonic epilepsy and tem-
poral and frontal lobe epilepsies [69,70]. Importantly, tachycardia has
been noted to precede seizures in some patients with temporal lobe ep-
ilepsy and, thus, might be useful in seizure prediction [71,72]. On the
other hand, bradycardia seems to be involvedwith a nonclear brain net-
work [73], sometimes with involvement of the left hemisphere (insular
cortex and amygdala) [74]. Bradycardia and conduction disorders were
also observed in temporal lobe seizures leading to secondary syncope
[75]. Postictal hypotension has been shown to be another important au-
tonomic biomarker measure with strict correlation with postictal gen-
eralized EEG suppression after generalized tonic–clonic seizures [76].

The utilization of cardiac cues in seizure detectors has been most
commonly applied to newborns, in whom signs of seizures are subtle
[77,78]. Because EEG use in newborns is difficult and requires spe-
cialist interpretation, adjunct systems based on changes in heart
rate might be particularly useful in neonatal intensive care units.
Computing features from ECG signals can require several steps, just
as in EEG analysis. A promising approach computes heart rate using
an automatic QRS detection algorithm from which various spectral
features are calculated. A two-phase wrapper-based feature selec-
tion technique is then applied to rapidly reduce the feature set.
Three classification schemes were tested, including a linear discrim-
inator and k-nearest neighbor method, for classifying the reduced
feature set. The system achieved sensitivities and specificities of
greater than 85% [32].

The use of cardiac-based seizure warning systems in older indi-
viduals is complicated by complex changes in the ECG that occur in
physiological and pathological conditions, such as exercise, emotion-
al states, disease states, and in response to the 24 h circadian rhythm.
Nonetheless, the system carries potential. In a limited study of six pa-
tients with temporal lobe epilepsy, power spectral analysis of heart
rate variability demonstrated the ability of such a system to provide
warnings. In some detected seizures, the algorithm was activated prior
to clinical seizure onset, indicating that this method may be useful as a
seizure predictor [33]. A closed-loop system based on ECG detection

systems using VNS as an outputmechanism is currently under evaluation
(http://clinicaltrials.gov/ct2/show/NCT01325623). Results from this
study have been announced by the sponsor (http://www.marketwatch.
com/story/cyberonics-announces-results-from-the-e-36-study-of-vns-
therapy-delivered-by-the-aspiresrtm-generator-2013-12-08).

2.3. Accelerometry

Accelerometers are devices that detect changes in velocity and direc-
tion. The so-called “3-D accelerometers” are capable of detecting chang-
es in the x, y, and z planes. The use of motion sensors in seizure
detection is relatively new. These systems may serve in the detection
of motor seizures, such as tonic–clonic or myoclonic seizures. Acceler-
ometers are only useful in the detection of ongoing seizures. Specificity
may also be a problem, as many sudden motions, such as stumbling,
may be similar to seizure movements.

Thefirst actigraphswere applied in a pilot trial of 18 patients, report-
ed in 2005, and these relied primarily on expert interpretation of the re-
cording system [35]. In this study, Cluitmans and colleagues used
motion sensors on the wrists, ankles, and chest and were able to detect
48% of seizures.

The SmartWatch, manufactured by Smart Monitor, Inc. (www.
smart-monitor.com), is a similar device that can be worn on the wrist
or ankle and utilizes pattern recognition and feature analysis in its
built-in seizure detection algorithm. The SmartWatch can also synchro-
nize with a smartphone application (app) via Bluetooth to transmit sei-
zure data to the user's mobile phone. The app can then contact
caretakers to alert them of ongoing seizures. In a pilot study, 7 out of 8
tonic–clonic seizures were detected [39]. Using our previous language
for seizure detection and classification, the velocity, acceleration, and
other data provided by motion sensors are either used as feature data
directly or are computed into secondary features. Classification algo-
rithms, as discussed above, are then trained to distinguish normal
movements from seizure movements. An active cancel button can be
used to decrease false-positive results over time.

A recent prospective trial evaluated the use of another three-
dimensional accelerometer, the Epi-Care Free device (Danish Care Tech-
nology ApS, Sorø, Denmark). The device is worn as a wristwatch and
contains a three-dimensional accelerometer and a transmitter that can
send real-time accelerometric information to a control unit. In a prospec-
tive trial in 20 patients who had 39 generalized tonic–clonic seizures
during the trial period, the systemwas able to detect 35 (89.7%) seizures.
The device had a false-positive rate of 0.2 seizures/day [43].

Accelerometers have also been evaluated in other types ofmotor sei-
zures. Further refinements by Cluitmans and colleagues in detection al-
gorithms improved the sensitivity and decreased the false-positive rate
in the detection of nocturnal [36] andmyoclonic seizures [38,79]. These
systems used linear threshold, time-scale, and time–frequency functions.
When compared with video-EEG results and different accelerometers
for the detection of nocturnal hypermotor seizures, the wristwatch was
found to have a sensitivity of over 90% [41,80].

Fig. 1. Steps involved in feature extraction and classification for seizure detection and prediction. Seizures are detected using a sequential process of steps. During the training phase, fea-
tures are computed from a large number of patients to optimize the model. During the implementation phase, real-time data are acquired from an individual patient, and features are
computed. Data from the saved model are applied for classification.
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Ep Detect (www.epdetect.com) is a smartphone app designed to
capture tonic–clonic seizures using the device's built-in accelerometer.
The app is currently in beta testing.

Use of accelerometry carries a number of drawbacks. Most obvious-
ly, it can only be used in a select portion of seizures that have well-
defined motor activity. Distinct patterns have been determined by
Cluitmans for myoclonic, tonic, tonic–clonic, clonic, and complex
motor seizures [35]. Additionally, trials of accelerometry often have
high false-positive rates [36,39], presumably, because of various
nonseizure movements, such as stumbles, sports or video games,
which create motion data that cannot yet easily be distinguished from
seizures. As with EEG and ECG data, this could be due to inherent limi-
tations in the data themselves, or, perhaps, better learning algorithms
will be able to find subtle distinctions between seizure and nonseizure
motions. Accelerometry might be useful in predicting motor seizures
and has the advantage that sensors can be worn relatively unobtrusive-
ly, i.e., on the wrist or ankle, instead of wearing electrodes on the head
as required for EEG recordings.

2.4. Video detection systems

A variety of models have been developed to detect seizures using
video monitoring. Video systems analyze a variety of elements in
order to detect seizures. Motion trajectory methods are based on
the path of moving objects through space over time. Other elements
used in analysis include velocity, area, angular speed, and duration
[81]. Some of the video analysis techniques are based on the use of
markers, which use detectable objects worn on joints and extremi-
ties of patients [82]. Marker-free methods have also been developed
and have been tried in newborn, pediatric, and adult groups [37,44,
45,83]. Current video detection systems are limited by the area that
is covered by the video camera and by the inability of detectors to
capture events which occur when patients are obscured from view,
such as under covers.

2.5. Mattress sensor

The MP5 mattress monitor (Medpage Ltd., UK) is designed to de-
tect seizures occurring during sleep. Placed between the mattress
and box spring, the microphone in the monitor detects tapping and
spring noise and has an adjustable sensitivity. In a study of 64 sub-
jects having 8 tonic–clonic seizures, the system was capable of de-
tecting 5 (62.5%) events. The device suffered from a poor positive
predictive value of 3.3%. Its high negative predictive value of 99.8%,
however, may give patients with these seizures a greater sense of se-
curity [47].

The Emfit movement monitor (Emfit Ltd., Finland) is a quasi-
piezoelectric seizure detector placed under the mattress system that
can alert caregivers to unexpected motor activity. The system also uti-
lizes a bedside monitor. In a trial with 22 patients, the system was
able to detect 80% of seizures [48].

2.6. Baby monitors

Baby monitors typically use a night-vision camera, a microphone,
and, often, a Wi-Fi connection. Baby monitors have been used by par-
ents to increase the awareness of potential seizures, such as in the
Baby Ping system (www.babyping.com). They have not been employed
to date in an automated seizure warning system.

2.7. Other seizure detection systems

The potential for seizure-alert dogs to detect seizures is support-
ed by anecdotal evidence [50], and such dogs might even decrease
the frequency of seizures in some patients [84]. Based on available
studies, dogs can detect seizures after seizure onset and alert others,

but dogs are not reliable in seizure prediction [85]. However, evi-
dence is conflicting, and more research is needed to understand
these findings and the means by which dogs might be able to detect
oncoming seizures [86].

In-vivo experiments in rats using optical coherence tomography
showed that near-infrared light could register the progression of sei-
zures. This technique has been able to produce high resolution depth re-
solved cross-sectional images facilitating identification of changes in
cortical tissue before and after seizures [87]. Another technique is
near-infrared spectroscopy, a noninvasive method that has proven bet-
ter than SPECT in detecting an epileptogenic focus [88]. Other methods
by which seizure detection can be done include measurement of
hormone levels [89], nonformed vocalizations, and extraocular
movements.

3. Seizure prediction

Predicting seizures potentially carries even greater advantages com-
pared with seizure detection. Such devices might be useful both in
preventing accidents and in improving outcomes, ultimately allowing
early treatment or even prevention of seizures. A survey of 141 patients
with epilepsy found that more than 90% of respondents believed that
the development of means to predict seizures was important. These pa-
tients voiced a preference for sensitivity over specificity in seizure pre-
diction [90]. Prediction systems must be able to identify preictal
changes that – if present – occur within minutes, hours, or days prior
to seizures. Note that the features used to predict seizures in advance
may or may not be the same as those used to detect the presence of a
seizure.

3.1. EEG and electrocorticography

Electroencephalography changes preceding seizures can theoretical-
ly be detected to permit anticipation of oncoming seizures. The evalua-
tion of EEGs from a series of patients with mesial temporal lobe
epilepsy, for example, suggests that EEG changes can be noted as early
as 7 h prior to seizure onset [91]. The first EEG-based attempts at iden-
tifying preictal patterns relied primarily on linear approaches for com-
puting features of the EEG on a sliding window [92,93]. These models
gaveway to nonlinear signal processingmethodologies,which analyzed
the spontaneous formation of spatial, temporal, and spatiotemporal
patterns.

Seizure prediction based on real-time EEG presents a number of
challenges compared with retrospective methods of EEG analyses.
Algorithm-based EEG analysis is complicated by the fact that EEG man-
ifestations of seizures differ widely between patients and even within
the same patient. Techniques which interpret EEG findings to provide
seizure predictions utilize a variety of different strategies for feature cal-
culation and supervised learning.

Various features have been computed from EEG time series in
order to detect changes immediately prior to the onset of seizures.
These include some of the more traditional frequency-based
methods discussed below, as well as more recent measures derived
from complex system theory. For example, permutation entropy
was found to change significantly up to 5 s before seizure onset in
rat models of absence epilepsy [94]. Kolmogorov entropy, correla-
tion dimension [95], relative wavelet energy [96], and approximate
entropy [97] have all demonstrated some success for detecting
preseizure onset periods but could not distinguish healthy controls
from people with epilepsy during seizure-free periods. Mixed results
have been reported for automated seizure detection algorithms
based on four different measures (principal eigenvalue, total
power, Kolmogorov entropy, and correlation dimension). The algo-
rithms were found to be patient age-specific, and no one algorithm
performed well on all patients [98]. These studies strongly suggest
that the information contained in EEG data relevant to seizure
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detection has not yet been fully exploited, and continued research is
needed. Alternatively, individual patient-based detector training
may be necessary to increase sensitivity and specificity.

Many of the above mentioned techniques have been applied to-
wards identifying a preictal phase which can be used in seizure predic-
tion. In one study, higher-order spectral features computed from a
sample of 300 EEGs displayed unique ranges for normal, preictal, and
seizure classes that could be used for seizure prediction [99]. Trials
with recurrent neural networks have detected preictal stages which
occur minutes before clinical seizures [100]. Another study, utilizing
probabilistic neural networks,was able to predict 100% of seizureswith-
in a 10-minute prediction horizon [11]. Cost-sensitive SVM are a modi-
fication of the traditional SVM that can be employed to give different
weights to different classes of information, a system that could be useful
in the differentiation of interictal and preictal activities. A prospective
study used a cost-sensitive SVM to classify linear features computed
from a frequency decomposition of the EEG. Results from 9 patients
with 45 seizures found this approach to have a sensitivity of 78% and a
zero false-positive rate [15]. Trials evaluating fuzzy logic systems for sei-
zure prediction are underway [27,101].

While the majority of research in seizure warning systems has fo-
cused on EEG-based methods for seizure detection, this approach
implies a number of limitations. Currently available systems suffer
from poor sensitivity and specificity, though these systems are con-
stantly being refined. Few of these methods have been tested pro-
spectively. It is not yet known if the limits of seizure detection with
EEG are due to inherent limits in brain electrophysiology, EEG hard-
ware quality, or algorithms used to analyze these data. New features
that are highly predictive of seizure onset may be found. Additional-
ly, better classification algorithms will identify novel patterns within
known features. Very large numbers are needed to find subtle pat-
terns in EEG features and to assess the accuracy of these seizure de-
tection methods. Studies with smaller numbers may report higher
numbers of false-positive conclusions [102]. The use of EEG in the
outpatient setting for long durations is poorly tolerated by most
patients, though this may be partially alleviated by the use of
electrocorticography.

3.2. Electrical probing of cortical excitability

Electrical probing is able to actively test brain excitability by means
of stimulation and recording of the response, thereby providing mea-
sures of the excitability of the stimulated cortex. [103]. Specifically, a
transcranial magnetic or electrical probe is used to deliver a stimulus
to the brain, and the transient or steady-state response is measured.
The signal is then processed, and the neural excitability is estimated
by extracting a feature of EEG responses using themean phase variance,
meaning the variation in the instantaneous frequency of the responses.
In a limited trial carried out in two patients, the technique was demon-
strated to have features which vary with the sleep/wake state, interictal
discharges, and epileptic seizures.

3.3. Long-term implanted advisory system

Intracranial electroencephalography in patients with refractory epi-
lepsy has been developed as a feasible tool in seizure prediction in am-
bulatory patients. An Australian group [28] implanted 15patientswith a
seizure advisory device and found high rates of sensitivity, ranging from
65 to 100%, with no significant impact on quality of life, severity of sei-
zures, and measures for anxiety and depression disorders.

4. Combined methods for seizure detection

Multiple applied methods can be used to further improve the sensi-
tivity and specificity of seizure detection. The general approach is simi-
lar to that used with individual data sources: first, features must be
computed from the measured quantities; second, simple thresholding
or a more extensive training process must be used with real data to de-
termine how the features can be used to detect or predict seizures. The
thresholding process, when using multiple data sources, can provide a
higher degree of resolution in detecting events. Combinations of seizure
detection methods could possibly be individualized for patients to pro-
vide optimal seizure detection. A number of trials have evaluated com-
bined systems on seizure detection (Table 3).

4.1. Combined EEG systems

Seizure detection systems may implement a variety of methods for
computing signal features, reducing the feature set or creating new fea-
tures. One ormore classification or learning algorithmsmight be used to
determine how to map the features to the patient's state, and to elicit
whether a binary classification (seizure/no seizure) or a more refined
classification (normal, preictal, ictal, and postictal, for example) is
more appropriate. The use of too many features can result in reduced
prediction accuracy due to the ‘curse of dimensionality’ [51]. Determi-
nation of the best features and the best classification methods is an
area of active research. A hybrid classification system, called EPILAB, is
MATLAB-based software that attempts to usemultiple algorithms to an-
ticipate seizures. The systemutilizes algorithms fromunivariate (single-
EEG channel) and multivariate (multiple EEG channels) data [107]. Tri-
als studying the predictive value of this system are underway (www.
epilepsiae.eu), and software is publically available.

4.2. Combined accelerometry and electrodermal activity methods

The use of electrodermal activity has recently been attempted in sei-
zure detection. Sweat secretion during seizures is thought to relate to
changes in sympathetic activity [108]. Additionally, autonomic changes
may correlate with postictal suppression on EEG [109]. The use of elec-
trodermal activity has been applied in a biofeedback system in adult ep-
ilepsy and has shown promising results [110]. The use of a wearable
device to monitor both electrodermal activity and accelerometry has
been attempted for seizure detection (Fig. 2). Data from both sensors
are used to compute a larger set of features that are then used to train

Table 3
Methods utilizing a combination of more than one data input for seizure detection.

Author, year Measuring devices Algorithm Results

Greene, 2007 [104] Retrospective review of EEG/ECG data/infant seizures Both patient-specific and patient-independent
algorithms using statistical classifier methods

Patient-specific system — SEN of 98% and FPR
of 13.2%; patient independent system— SEN
of 81% and FPR of 29%

Shoeb, 2009 [105] Combined EEG and ECG data/simple partial, complex
partial, and generalized seizures

Patient-specific detector with adaptive ECG algorithm Detected all seizures, FPR of 0.4 events/h

Poh, 2012 [106] Wrist band sensor utilizes accelerometric data and
conductance/generalized tonic–clonic seizures

Generalized tonic–clonic seizures detected via SVM SEN of 94% and FPR of 0.74 events/day
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a classification algorithm, such as anANNor SVM.One such systemused
19 features, including time, frequency, and nonlinear measures [111].
In a trial conducted on a series of 80 patients, seven of whom had
generalized tonic–clonic seizures, the combined electrodermal and
accelerometry systemwas able to correctly identify 94% of such seizures
using an SVM to classify the feature set. The system had a false-positive
rate of 0.74 seizures over 24 h andwas able to detect seizure onset on an
average of 31 s following clinical seizure manifestations [106]. The use
of electrodermal activity, in addition to accelerometry, provides addi-
tional sensitivity compared with models that utilize the latter alone
[106]. Further studies will need to be done to assess the viability of
these models in the outpatient setting.

4.3. Combination of ECG and EEG data

Seizure detection systems utilizing both ECG and EEG data have
been developed. The EPILAB system, for example, is able to incorporate
both ECG and EEG data [107]. In a retrospective study evaluating the de-
tection of newborn seizures, extraction of both EEG and ECG features
provided a high degree of accuracy [112].

Another study utilized an ECG-based and an EEG-based system to
demonstrate the potential of these two modalities to complement each
other. The study, performed on patients undergoing inpatient video-
EEG, utilized trained seizure detection algorithms with features comput-
ed from patient-specific data. As with all supervised learning algorithms,

prior training is required with data segments that have been labeled by a
neurologistwho is able to differentiate ictal and nonictal events. Detected
seizure events activated a vagal nerve stimulator, which can potentially
arrest seizure activity. A limited trial of the system was performed on a
series offive patients undergoing video-EEGwith simple partial, complex
partial, and generalized seizures. The system was able to detect 5/5
seizures and had a false-positive rate of one every 2.5 per h [105].

The pros and cons of the detection and prediction methods for epi-
lepsy described in this manuscript are detailed in Table 4, as well as
the devices currently available or under research in Table 5.

5. Electronic seizure record applications

Several electronic mobile applications have been developed to elec-
tronically track seizure information, including type, frequency, and dura-
tion (Table 6). These electronic seizure record applications replace paper
seizure logs and have become a tool to help patients, families, and clini-
cians capture accurate seizure data. Seizure record applications allow
families to easily record seizures in an electronic format that is user-
friendly, mobile, and easily accessed by their treating epileptologist.

Currently, there are several applications already available on themar-
ket. At the forefront, SeizureTracker (www.seizuretracker.com) and My
Epilepsy Diary (http://www.epilepsy.com/seizurediary) are mobile sei-
zure diary applications that track seizure activity, preevent and
postevent activities, medication schedules, and appointments (Tables 6,
7). SeizureTracker andMyEpilepsyDiary allowusers to input seizure ep-
isode characteristics, such as seizure type, date, time, duration, frequen-
cy,medication, triggers, andmood. SeizureTracker also allows the user to
record and upload seizure videos. Both applications provide detailed sei-
zure reports, graphs charting seizure duration, frequency, and medica-
tion schedule, and have also developed a unique clinician portal system
that allows the clinician to access the patient's seizure data online. Fur-
thermore, SeizureTracker developed The Seizure Tracker Clinical Trial
Monitoring Tool in collaboration with the Neurocognition in Tuberous
Sclerosis Complex Clinical Trial (NCT01289912). The Seizure Tracker
Clinical Trial Monitoring Tool is an electronic logging system that tracks
multicenter enrollment.

Epi & Me (http://epiandme.com/), Epilepsia App (https://itunes.
apple.com/us/app/epilepsia-app/id589429873?mt=8), Epilepsy Action
(http://app.epilepsy.org.uk/), Epilepsy Guide App (https://itunes.apple.
com/us/app/epilepsy-guide/id375345255), and Young Epilepsy (http://
youngepilepsy.org.uk/all-about-epilepsy/epilepsy-app) are other mo-
bile seizure diary applications. Epilepsy Guide App, Seizure Disorder
Coach (http://resqrsoftware.com/seizure.php), Epilepsy Action, and
Young Epilepsy are emergency guides that educate users on emergency
steps that need to be taken during seizures (Tables 5, 6).

Fig. 2. A wristband sensor measures a combination of accelerometric and electrodermal
data. The combination of accelerometric and electrodermal activity provides superior sen-
sitivity than any single systemused alone. The device is currently being tested as a seizure
detection system.

Table 4
Pros and cons of detection methods.

Method Pros Cons

Electroencephalography Noninvasive with valuable data in detecting epileptic seizures. Low spatial resolution (limited to seizures with EEG correlation).
Electrocorticography Seizure prediction with 10 min of horizon and electrographic seizures. Invasive procedure and follow-up in hospital environment.
Implanted advisory
system

Seizure prediction with long-term EEG ambulatory monitoring using
an algorithm for each patient.

Invasive procedure with serious adverse events.

Electromyography Technique with high sensitivity and low false detection rate. No studies with people with epilepsy. Only effective in some types of
motor seizures.

Electrocardiogram Narrow relation of tachycardia in periictal phase. On the other hand,
bradycardia is sometimes observed in lateralization to left hemisphere.

Rhythmic cardiac changes can be observed in other physiological and
pathological conditions, especially in older patients.

Accelerometry Able to detect movement changes in x, y, and z planes. Used in
seizures with motor component.

Any sudden movement can be registered as a seizure event.

Video detection systems Feasible methods in recognizing kinematic patterns of seizure
phenomena.

Limited to a subset of epileptic seizures.

Mattress sensor Identification of nocturnal seizures, especially tonic–clonic seizures. Presented a high negative predictive value (99.8%).
Audio classification Good performance for a subset of patients who produce sounds

during and after seizures.
Not applicable for patients who do not produce sounds during
his/her seizures.

Seizure-alert dogs Able to give alert before the seizures for recognition of specific
changes in his/her owner.

Likely not monitoring patients while the dogs sleep; cannot distinguish between
epileptic and nonepileptic seizures.
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Table 5
Currently available devices.

Company Brand name Device type Article published Available on
market

Signal processing Website

ActiGraph wGT3X, wActiSleep,
GT3X, ActiSleep

Watch activity monitor No Yes Triaxis, solid state accelerometer ambient
light photodiode

http://www.actigraphcorp.com

Advanced Brain
Monitoring

X series — EEG
wireless monitoring

EEG headsets with 4 (×4), 10 (×10),
or 24 (×24) channels

No epilepsy Yes Wireless EEG http://advancedbrainmonitoring.
com

Affectiva Affectiva/Q Sensor Wristband Poh et al. [106,109,111,113]
and Fletcher et al. [114]

Temporally
interrupted

Electrodermal activity, triaxis accelerometer
and body temperature

www.affectiva.com

Air Brain System/Kwansei
Gakuin University

Air Brain System Portable EEG telemetry system using
3G network with a smartphone

Honda et al. [115] No 3G, Wi-Fi connection to smartphone http://eudl.eu/doi/10.4108/
icst.bodynets.2013.253918

Alert-It Ep-It Companion
Monitor (S1029)

Bed motion monitor (accelerometer
under mattress)

No Yes Wireless to radio transmitter wired to nurse
call, telephone dialer, or remote bell

http://www.alert-it.co.uk

Ep-It Guardian Moni-
tor
(P139)

Bed motion monitor (accelerometer
under mattress)

No Yes Wireless to radio transmitter wired to nurse
call, telephone dialer, or remote bell

Badge-it Panic button No Yes Wireless to radio transmitter wired to nurse
call, telephone dialer, or remote bell

Ashametrics Company Wrist LifeBand, Ankle
LifeBand,
Chest LifeBand

Wristband, ankleband, and chestband Rajan et al. [116] and
Fletcher et al. [114]

Yes Skin conductance, three-axis accelerometer,
ambient temperature sensor, real-time clock
with quartz crystal precision and autosync
with phone; chestband (+ECG heart monitor)

BioLert EpiLert Watch-like sensor system Kramer et al. [40] Yes Wireless transmission http://www.biolertsys.com
Baby Ping Baby Ping Babymonitor— video, audio, and night-vision

camera
No Yes 3G, 4G, Wi-Fi connection www.babyping.com

The Bhutan Epilepsy Project/
Grand Challenges Canada

2014 The Bhutan
Epilepsy Project

Portable EEG telemetry system using 3G
network with a smartphone

Hodson [117], Scholey
[118], and Yang [119]

No 3G, Wi-Fi connection to smartphone http://www.bhutanbrain.com

Capture Proof Capture Proof HIPAA compliant platform to share
medical videos

No Yes Wireless transmission www.captureproof.com

Cyberonics Inc. Aspire Cardiac abnormalities during epileptic
seizures

No No System linked to VNS system (closed-loop) http://clinicaltrials.gov/ct2/show/
NCT01325623

Danish Care ApS Epi-Care Free Device Wristband — accelerometer Beniczky et al. [120] Yes Wireless transmission — pager and mobile phone http://danishcare.dk/uk
Epi-Care 3000 Bed motion monitor (accelerometer

under mattress)
No Yes Wireless call — SMS message, pager, or emergency

phone
D.C.T. Associates Pty Ltd. Vigil-Aide Vibration motion (on bed or in pouch/

belt): audible, vibratory, or visual
(flashing lights)

No Yes Radio transmission by coded signal http://www.dctassociates.
com.au/convul.htm

Movisens Electrodermal activity
sensor

Electrodes (palm, sole of foot, and finger) No Yes Raw signals of electrodermal activity, 3-axis
acceleration, air pressure, and temperature

http://www.movisens.com

Emfit Emfit Seizure Monitor Bed motion sensor (accelerometer under
mattress)

Narechania et al. [48] Yes Wireless transmission http://www.emfit.com

Empatica E3 Wristband Wristband and free mobile phone
application

No Yes Photoplethysmography, electrodermal activity,
triaxis accelerometer, body temperature, and heat
flux

https://www.empatica.com

EpDetect EpDetect Free mobile phone application
(accelerometer)

No Yes Wireless transmission — SMS messaging,
movement
detection, and GPS system

http://www.epdetect.com

EpiCall Ltd. EpiCall Sticker placed on the side of the face with
electrooculograph and photoplethysmograph
electrodes

No No Monitoring seizure biomarkers (heart rate and
extraocular eye movements)

http://clinicaltrials.gov/ct2/show/
NCT01436695

Garmin Garmin Forerunner
310X

Watch No Yes Heart rate monitor http://
www.heartratemonitors.com

Holst Centre/IMEC,
Hobo Heeze BV

Armband with chest electrodes Massé et al. [121] and
van Elmpt et al. [122]

No Prototypes using electroencephalogram,
electrocardiogram, and accelerometer

http://www.hoboheeze.nl/engels/
episode.html

IctalCare A/S IctalCare 365 Body-worn “ePatch” attached to the upper
arm

Conradsen et al. [123] No Wireless surface electromyography (sEMG) http://ictalcare.com/

(continued on next page)
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Table 5 (continued)

Company Brand name Device type Article published Available on
market

Signal processing Website

Medpage MP5 Bed motion sensor and vocalization
microphone (accelerometer under mattress
and microphone)

Fulton et al. [124] and
Carlson et al. [47]

Yes Wireless transmission — radio pager http://www.medpageusa.com

MP2 Bed motion sensor (accelerometer under
mattress)

No Yes Wireless transmission — a radio alarm pager and/
or a desktop alarm receiver

ST2 Bed motion sensor and breathing cessation
monitor (accelerometer under mattress)

Fulton et al. [124] Yes Wireless transmission — radio pager

Mio Alpha Mio Alpha Strapless Watch No Yes Heart rate monitor http://www.alphaheartrate.com
Sensorium Sensealert-102/EP200 Bed motion sensor (accelerometer under

mattress)
No Yes Digital microprocessor — radio transmission http://www.sensorium.co.uk

Sparkfun ADLX330 Wristband Bayly et al. [125] Yes Triple axis accelerometer https://www.sparkfun.com
Smart Monitor Corp. SmartWatch Wristwatch Lockman et al. [39] Yes Android application — Bluetooth signal http://www.smart-monitor.com
Polar H1, H2, H7 Body strap No Yes Heart rate monitor http://www.polar.com

FT1, FT2, FT60, FT80,
FT40, FT7

Watch No Yes Heart rate monitor

Shilene.com
Seizure Alert and
Recorder

Free mobile phone application
(accelerometer under development)

No No Wireless transmission — SMS messaging,
movement
detection, and GPS system

http://shilene.com/

Suunto M5, Suunto Quest Watch No Yes Heart rate monitor www.suunto.com
Timex Timex Heart Rate

Monitor
Watch No Yes Heart rate monitor www.timex.com

Vahlkamp Epi-Watcher Bed motion sensor (accelerometer under
mattress)

No Yes Wireless (radio waves) alarm bell and wired
version integrated.
Transmit spoken message to preprogrammed
numbers

http://www.vahlkamp.nl/
Epi-Watcher_gb.html
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Table 6
Electronic seizure record applications.

Mobile application Founder App purpose Device type Clinical trial Available
on market

Website

Cleveland Clinic MyEpilepsy The Cleveland Clinic Foundation Seizure diary, educational tool, and
emergency guide

iPad only No Yes http://my.clevelandclinic.org/mobile-apps/
epilepsy-app.aspx

E-Action Info: your epilepsy
resource

UCB Pharma SA, Logicopolis Technology
Inc., CPC Healthcare Communications Toronto

Educational tool and link to my epilepsy
diary

iPhone, iPad, iPod Touch No Yes http://www.e-action.ca/Home.aspx?lang=en

Epi & Me Gilles Huberfeld, UCB Pharma S.A. France/Brain
and Spine Institute

Seizure diary iPhone, iPad, iPod Touch No Yes http://epiandme.com/

Epilepsia App Soda Virtual Seizure diary iPhone, iPad, iPod Touch No Yes https://itunes.apple.com/us/app/epilepsia-app/
id589429873?mt=8

Epilepsy Action Epilepsy Action British Epilepsy Association Seizure diary, educational tool, emergency
guide, and call helpline feature

Android MDA, iPhone, iPad, iPod
Touch and, online account

No Yes http://app.epilepsy.org.uk/
https://www.epilepsy.org.uk/

Epilepsy App Adiljan Abdurihim and Andrius Januska Seizure diary and alarm with SMS
messaging and GPS system

Android MDA No Yes https://play.google.com/store/apps/details?
id=no.hig.stud.bachelor.epilepsyapp

Epilepsy Guide App National Society for Epilepsy Seizure diary and emergency guide Android MDA, iPhone, iPad, iPod
Touch

No Yes http://www.epilepsysociety.org.uk/

Epilepsy Manager Pro/
Epilepsy Manager 2/
Epilepsie

Julia Bechman Seizure diary Android MDA, iPhone, iPad, iPod
Touch

No Yes https://itunes.apple.com/us/app/epilepsy-
manager-pro/id766021861?mt=8

My Epilepsy Diary Dr. Robert Fisher and Patty Shafer, RN Epilepsy
Foundation

Seizure diary Android MDA, iPhone, iPad, iPod
Touch, and online account

No Yes www.epilepsy.com/seizurediary

Seizure Diary Gavin Harris Seizure diary iPhone, iPad, iPod Touch No Yes https://itunes.apple.com/us/app/seizure-diary/
id402201129?mt=8

Seizure Disorder Coach Think Safe Inc. Emergency guide iPhone, iPad, iPod Touch No Yes http://resqrsoftware.com/seizure.php
Seizure Journal for Parents Cloud Med LLC Seizure diary iPhone, iPad, iPod Touch No Yes https://itunes.apple.com/us/app/seizure-journal-

for-parents/id420054138?mt=8
Seizures Dmitry Ulupov, Satoru Systems Seizure diary iPhone, iPad, iPod Touch No Yes http://satorusystems.com/seizures.html
Seizure Tracker Rob and Lisa Moss/Seizure Tracker LLC Seizure Diary Android MDA, iPhone, iPad, iPod

Touch, and online account
NCT01289912 Yes www.seizuretracker.com

Young Epilepsy Young Epilepsy, The National Centre for Young
People with Epilepsy

Seizure diary, educational tool, emergency
guide, and call helpline feature

Android MDA, iPhone, iPad, iPod
Touch

No Yes http://youngepilepsy.org.uk/all-about-epilepsy/
epilepsy-app

Your Epilepsy Diary Neal Daringer Seizure diary Android MDA No Yes https://play.google.com/store/apps/details?id=
org.daringer.EpApp2

MDA: mobile device app.
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6. Population health data in disease and outcome prediction

The use of population health data has the potential to provide indi-
vidualized care in epilepsy by utilizing information derived from large
groups of individuals. Successful examples of population-based data
have been seen in infectious diseases. Use of population health data,
for example, improved the ability of models in diagnosing pertussis
[126] and hand, foot, andmouth disease [127]. The application of popu-
lation health data can also extend beyond its application towards diag-
nostics and can even investigate outcomes or adverse effects. A logistic
regression model, termed the predictive pharmacosafety network, for
example, was applied retrospectively to predict unknown drug adverse
effects over a 5-year period. This model achieved a relatively high area
under the receiver operating curve, suggesting that this type of model-
ing can be used in determination of unknown adverse effects and drug
interactions by the use of large amounts of population-based data [128].

6.1. Prediction models in epilepsy

Prediction models in epilepsy may also be based on correlations be-
tween seizure occurrence during certain times of theday andduringdif-
ferent states of arousal on the basis of patient age, seizure localization,
and seizure semiology [129–131]. These data can be used to develop
prediction models that utilize individual variables to predict the timing
of greatest seizure risk. The use of large-scale population health data can
serve as a source of information for improving the accuracy of similar in-
dividualized prediction models. Additionally, these data sets might per-
mit the determination of other important information, such as the
medication efficacy, disease progression, and prognostic factors. In a
trial conducted on 20 adult patients taking levetiracetam who self-re-
ported mood changes, it was determined that patients taking the drug
were more likely develop aggressive moods over the course of therapy
and that changes in aggressive mood were maximal during daytime
[132]. Such models hold promise if expanded upon in a larger scale.

6.2. Automated detection systems in prediction models

Traditionally, seizure logs or diaries have been used by clinicians to
determine the periods of greatest seizure susceptibility. Automated sei-
zure detection systems can serve as a supplement or replacement for
patient diaries for a number of reasons. Patients and/or their parents
may not document all seizures if they are required to enter the data
manually. Certain types of seizures, such as complex or simple partial
seizures, may be subclinical and not fully observed. Seizures that occur
when thepatient is asleepmight be similarlymissed. A studyperformed
on patients undergoing video-EEG found that patients were unaware of
approximately half of their clinical seizures [133]. Behavioral factors

may affect seizure reporting as well; for example, caregivers and pa-
tients may be more vigilant when monitoring seizures while switching
between antiepilepticmedications [104]. Such factorsmay confound ac-
curacy of seizure logs. Detection systemsmay fill this gap in seizure doc-
umentation in the future by providing more objective and real-time
data collection. Additionally, automated seizure detection methods
can provide information specific to the seizure tracking method, such
as EEG, ECG, or electrodermal data [109]. The use of seizure detectors
may, thus, be able to overcome some of the barriers to data collection,
patient monitoring, and prediction modeling.

7. Seizure detectors, data processing, and closed-loop systems

The use of seizure detectors may indicate deterioration, prevent
harm during treatment, and ultimately improve patient outcomes.
Such monitoring may be accomplished by a closed-loop system, in
which seizures can be detected or even anticipated and responded to
in real-time.

7.1. Closed-loop systems

Closed-loop systems provide an active feedback loop. In the medical
setting, the term refers to systems that monitor a patient's physiological
parameters and responds in an automatic or semiautomatic manner in
order to keep this parameter within specified limits. Closed-loop sys-
tems have most frequently been applied in emergency and intensive
care settings, where systems monitor vital signs and respond appropri-
ately to maintain these parameters within a determined range [134]
(Fig. 3).

Closed-loop models have been proposed in several medical subspe-
cialties, including anesthesia [135] and diabetology. In neurology,
closed-loop strategies have been proposed in the treatment of move-
ment disorders [136]; in the assistance of cognitive recovery following
acquired brain injury [137]; and in the acute management of strokes
[138], epileptic seizures [139], and other chronic conditions with recur-
ring events.

7.2. Closed-loop treatment in epilepsy

Closed-loop systems are analogous to physiological feedback sys-
tems. They consist of a measuring or detection device, data transmis-
sion, data processing, and a corrective response within an output
loop. The approach to feature selection, reduction, and classification
is similar, with perhaps higher specificity, since the response of the
system to false-positive detections (when there is no seizure)
could be undesirable.

Table 7
Features available in various electronic seizure record applications.

Mobile application Calendar view Video Data input reminders Data output Patient seizure profile Clinician portal to manage
multiple accounts

Cleveland Clinic MyEpilepsy Yes No Yes Yes No Yes
Epi & Me Yes Yes No No No No
Epilepsia App Yes Yes Yes Yes Yes No
Epilepsy Action Yes No No Yes Yes No
Epilepsy App Yes No Yes Yes No No
Epilepsy Guide App Yes No No No Yes No
Epilepsy Manager Pro/Epilepsy Manager 2/Epilepsie Yes No Yes Yes No No
My Epilepsy Diary Yes No Yes Yes Yes Clinician portal
Seizure Diary Yes No No Yes Yes No
Seizure Disorder Coach No No No No No No
Seizure Journal for Parents Yes No No No No No
Seizures Yes No No Yes No No
Seizure Tracker Yes Yes Yes Yes Yes Valet system
Young Epilepsy Yes Yes Yes Yes Yes No
Your Epilepsy Diary Yes No No No No No
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7.3. Measuring device

Reproducible data in a closed-loop system must be continually col-
lected and processed. A variety of sensor and detector tools have been
previously discussed.

7.4. Data transmission

Following data acquisition, the informationmust be transmitted to a
system. This will permit data analysis and processing. Such a system
should ideally accommodate rapid and secure collection and analysis
of real-time data.

Experimentalmodels of closed-loop systems have been tested on in-
patients admitted for video-EEG, such as in a recently developed model
in which vagal nerve stimulation is triggered upon detection of seizure
activity [105]. A closed-loop system in the outpatient setting, however,
should ideally employ wireless systems that do not interfere with day-
to-day living. In some experimental models, the use of wireless data
transmission using wireless local area network (Wi-Fi) [140] or
Bluetooth [39] has been carried out successfully. While these two sys-
tems are limited to proximity to a wireless receiver, similar systems
using mobile telecommunication technology could be developed.

For some devices, such as newer commercial EEG headsets, signal
processing, including feature calculation and classification, can be per-
formed in processors installed on the device itself, eliminating the
need for transmission of the raw data. For example, the b-alert system
(http://www.bmedical.com.au/shop/neuroscience/b-alert-x4-wireless-
eeg.htm) contains a lightweight processor on the EEG headset itself that
performs feature calculation and classification. A learning algorithm is
also built into the onboard processor to enable the headset to adapt to

individual users. The output has been used to evaluate EEG detection
of motor and cognitive performance in surgical residents when fatigued
after on-call shifts [141]. If such a devicewas designed for seizure detec-
tion, a positive signal could be relayed directly from the onboard proces-
sor to an intervention device, such as a vagal nerve stimulator. This
could utilize a dedicated signal, avoiding the possibility of interference
or interception. An encrypted result could also be transmitted to a
local smartphone for transmission to a health-care provider.

Data transmission is vulnerable to interception, which can result in
compromise, loss, or corruption of private health information. The
need for secure standards in data transmission are, thus, of paramount
importance. A variety of steps have been developed to ensure the secu-
rity of transmitted information. The recent demonstration of the E-SAP
authentication protocol is an example of such a system developed for
this purpose. The data transmitted by this system are encrypted and
allow for access by selected professionals and, thus, for patient care to
be uninterrupted by privacy needs [142].

7.5. Data processing

Data processing systems interpret the signals collected by the bio-
metric device to determine the patient's status and assess the probabil-
ity of imminent or ongoing seizures. Data processing systems should be
able to determine the patient's current seizure risk by the use of real-
time data in a rapid, efficient manner. The methods discussed above
for feature calculation and classification of real-time EEG, ECG, and
accelerometry data are examples of the data processing systems re-
quired for closed-loop systems. The success of a data processing system
is determined by parameters of sensitivity, specificity, and predictive
values. A frequently provided parameter in automated seizure detectors
is the “false alarm rate” which, in turn, is related to the frequency of

Fig. 3. Components of a closed-loop system. Data are collected continuously from patients using a variety of methods (electroencephalography, electrocardiography, electrocorticography,
electrodermal activity, or accelerometry.) Data are transmitted from site of collection and subsequently processed. Events are classified. Ictal events, when detected, lead to a corrective
response and can include abortive pharmacotherapy, neurostimulation, or contacting caretakers or emergency medical services.
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false-positive results. Although the steps and algorithms required for
closed-loop systems are similar to those for seizure predictors, the re-
quirements for processing time are often more stringent, as activation
of an intervention in time to prevent the seizure or warn a patient of
its onset must be rapid. The false alarm rate tolerance is also likely to
be quite strict.

7.6. Response system

The response system of the closed-loop device can takemany forms.
Basic forms of the device canwarn the patient or caretakers. In epilepsy,
an example for such a device is the SmartWatch, which sends alerts to
smartphones and can then automatically alert caregivers or health-
care providers [143]. Alternatively, the system could initiate an activity,
such as medication administration or activation of a neurostimulator,
which could potentially preemptively stop a seizure from developing.
The response system could also involve notifying a patient's caretakers,
physician, or emergency medical services, such as through a
smartphone or a pager device. The EpiLert system, (Biolert Ltd., Even
Yehuda, Israel) provides an example of a possible responsemechanism.
The unit is able to detect movements (accelerometer) and transmits a
message using a wireless system to a cell phone, the Internet, and a
landline telephone and also has a GPS component that facilitates instan-
taneous help (www.biolertsys.com).

Neurostimulators are promising tools for the treatment of seizures.
The responsive neurostimulation system (Neuropace Inc., Mountain
View, CA) is an implantable device designed for the treatment of refrac-
tory partial epilepsy. This system is able to identify abnormal activity in
the brain and immediately deliver electrical pulses in order to normalize
brain activity even before the patient presents any signs or symptoms of
seizure. There is also an external component that allows the physician
to analyze brain activity in real-time and adjust parameters according
to the seizure pattern of each patient (http://www.neuropace.com/
product/overview.html). The Neuropace system is also unique in that
it is able to detect both clinical and electrographic seizures. A random-
ized, double-blind, multicenter, sham-controlled study with 191 pa-
tients using the RNS system provided Class I evidence for this device.
There was a reduction in seizure frequency (p = 0.012) in comparison
with the placebo group, with no mood or cognitive adverse events
[144].

Another promising technique in rapid seizure treatment is deep
brain stimulation (DBS) of the thalamus. The technique uses stimulation
in the various nuclei of the thalamus [126,127], and its goal is to modu-
late the brain. The target of stimulation in different studies includes the
centromedian and anterior nucleus of the thalamus [126,127]. This
technique demonstrated efficacy in selected groups of patients, and an-
terior thalamic stimulation has received European CEMark approval for
refractory epilepsy in 2010 but is not approved in the US.

A sufficiently accurate seizure prediction system may be useful in
aborting imminent clinical seizures through other means. Rapidly act-
ing benzodiazepines, delivered through multiple routes (intravenous,
intranasal, intramuscular, rectal, and inhaled and, possibly, through
microcatheters in the vicinity of the seizure focus in the brain), may pre-
vent seizures before they occur. Other techniques for seizure abortion
have been studied in animals. A Peltier cooler was successfully used in
rapidly arresting in vitro hippocampal seizures in rodent studies [145].
Another in vitro study demonstrated the ability of UV light to elicit
gamma amino butyric acid secretion and secondarily attenuate seizures
[146]. Local drug delivery systems might serve a similar effect [147].

8. Trials of seizure detectors and predictors

Seizure detection can occur at multiple levels. To date, investigators
have developed systems for anticipating or detecting epileptiform activ-
ity and then using a closed-loop strategy to arrest further progression.
However, knowledge of epileptogenesis, or the degenerative changes

that occur to predispose an individual towards having seizures, con-
tinues to grow. The ability to detect and treat seizures could potentially
be applied at an earlier phase in order to determine and prevent the risk
of future seizure predisposition.

8.1. EEG/electrocorticography-based models

A number of models have studied the viability of early warning
systems in epilepsy. The most commonly employed models utilize
neurostimulators, such as deep brain stimulation or vagal nerve
stimulation, as an output method.

8.1.1. Animal models
An animal model, using Long–Evans rats with spontaneous spike-

and-wave discharges or pentylenetetrazol-induced seizures, has
shown potential as an EEG-based seizure prediction system. In a study
analyzing the viability of a closed-loop system, rats were monitored
by continuous EEG,whichwaswirelessly transmitted to amicrocontrol-
ler unit. The output of the device was via a neurostimulator situated at
the zona incerta. The system was found to have a detection accuracy
of 92% and a latency period of 0.6 s. The system was able to suppress
90% of seizures in rats with spontaneous discharges and 60–70% of sei-
zures in rats with pentylenetetrazol-induced seizures [140].

8.1.2. Human studies
The recently published prospective trial of a closed-loop system uti-

lizing VNS as an output and the NeuroPace system which have already
been mentioned [105], and more recently the combination of ECG-
VNS has been in development. An early warning system which had
been under development by NeuroVista monitors electrocorticography
continuously in the ambulatory setting andwirelessly transmits its data
to a handheld receiver. The system displays colors on the receiver dem-
onstrating the risk of seizure at any given period.

Optogenetics may prove to be an important method to further ex-
plore genetic alterations in seizure activity. Opsins are used to selective-
ly control neurons, leading to better understanding of pathophysiology
[148]. The first studies in animal models have shown promising results,
but more data are needed before this information can be applied as a
therapeutic approach in humans [149].

9. Challenges

9.1. Technical

The development of new devices in epilepsy is moving forward,
though serious challenges need to be addressed. Patients need devices
that are sufficiently accurate and which can be used with minimal ad-
verse effects and discomfort. Other important concerns are the reliabil-
ity in real-time transmission of the data, a precise description of
seizures, the need for 24-hour services to attend to events, and limita-
tions in portable batteries.

9.2. Regulatory

After the idea for a newdevice, the research and development have a
long journey to take to reach patients. The first step is to establish rela-
tionships with collaborators representing multiple areas of expertise
(clinical, technical, and industrial). The next step is validation of the
technology towards proof of principle and value and, finally, implemen-
tation and commercialization.

In the USA, the Food and Drug Administration (FDA) is responsible
for the regulation of medical devices. This regulatory framework in-
cludes the definition of the device, device classification, pathways to
market, clinical trials, and total product life cycle, in order to know if
the device is safe and effective. In addition, it is important to know
whether or not the device presents a low risk and is exempt from
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intense premarket evaluation, and if it is in compliance with good
manufacturing practices.

9.3. Payor

Seizure detection systems are resource intensive. There are some
questions that need to be addressed before commercialization of the
product: a)market need; b)market competition; c) time and capital re-
quirements needed to create prototypes; d) the price and maintenance
of a patent; e) time needed for return on investment; and f) presence of
similar and/or superior treatments. Once on the market, devices can be
replaced quickly by a new model, an increasing issue for FDA.

9.4. Research funding

There are a fewpartnering organizations that support the innovation
and early development of new devices in epilepsy. One example is the
Center for Integration of Medicine & Innovative Technology (CIMIT), a
nonprofit consortium that created a model to accelerate translation
medical research, especially medical device development (www.cimit.
org). Another example is the Epilepsy Therapy Project of the Epilepsy
Foundation.

10. Future directions

Collaboration among engineers, physicians, and industries towards
the invention of new technologies or improvement of older ones
will allow for a better approach towards prevention, detection and
prediction of seizures. This will ultimately lead towards more precise
diagnoses, individualization of treatment, and accurate guidance for
neurosurgical interventions. The conception of a closed-loop system
and prompt intervention has the potential for a better quality of life
for patients and their caretakers.

11. Conclusion

Seizure detection and prediction provide new and individually
targeted opportunities for the diagnosis and intervention in the man-
agement of epilepsy. These systems may allow for the detection of sei-
zures prior to their clinical onset. Furthermore, these systems might
be used in accident prevention and seizure tracking and could further
be useful in closed-loops to facilitate seizure abortion. Beyond their
uses in immediate patient care, these systems may allow for increased
granularity of neuroepidemiologic data, thereby permitting improved
seizure prediction and risk factor assessment.
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