1,319 research outputs found

    Strong dineutron correlation in 8He and 18C

    Get PDF
    We study the spatial structure of four valence neutrons in the ground state of 8^8He and 18^{18}C nuclei using a core+4nn model. For this purpose, we employ a density-dependent contact interaction among the valence neutrons, and solve the five-body Hamiltonian in the Hartree-Fock-Bogoliubov (HFB) approximation. We show that two neutrons with the coupled spin of SS=0 exhibit a strong dineutron correlation around the surface of these nuclei, whereas the correlation between the two dineutrons is much weaker. Our calculation indicates that the probability of the (1p3/2)4_{3/2})^4 and [(1p3/2)2_{3/2})^2 (p1/2)2_{1/2})^2] configurations in the ground state wave function of 8^8He nucleus is 34.9% and 23.7%, respectively. This is consistent with the recent experimental finding with the 8^8He(p,t)6p,t)^6He reaction, that is, the ground state wave function of 8^8He deviates significantly from the pure (1p3/2)4_{3/2})^4 structure.Comment: 10 pages, 9 figures, 3 table

    Widths of Isobaric Analog Resonances: a microscopic approach

    Get PDF
    A self-consistent particle-phonon coupling model is used to investigate the properties of the isobaric analog resonance in 208^{208}Bi. It is shown that quantitative agreement with experimental data for the energy and the width can be obtained if the effects of isospin-breaking nuclear forces are included, in addition to the Coulomb force effects. A connection between microscopic model predictions and doorway state approaches which make use of the isovector monopole resonance, is established via a phenomenological ansatz for the optical potential.Comment: 18 pages, 1 figure. To appear on Phys. Rev. C (tentatively scheduled for June 1998

    Microscopic Study of the Isoscalar Giant Monopole Resonance in Cd, Sn and Pb Isotopes

    Get PDF
    The isoscalar giant monopole resonance (ISGMR) in Cd, Sn and Pb isotopes has been studied within the self-consistent Skyrme Hartree-Fock+BCS and quasi-particle random phase approximation (QRPA). Three Skyrme parameter sets are used in the calculations, i.e., SLy5, SkM* and SkP, since they are characterized by different values of the compression modulus in symmetric nuclear matter, namely K=230, 217, and 202 MeV, respectively. We also investigate the effect of different types of pairing forces on the ISGMR in Cd, Sn and Pb isotopes. The calculated peak energies and the strength distributions of ISGMR are compared with available experimental data. We find that SkP fails completely to describe the ISGMR strength distribution for all isotopes due to its low value of the nuclear matter incompressibility, namely K=202 MeV. On the other hand, the SLy5 parameter set, supplemented by an appropriate pairing interaction, gives a reasonable description of the ISGMR in Cd and Pb isotopes. A better description of ISGMR in Sn isotopes is achieved by the SkM* interaction, that has a somewhat softer value of the nuclear incompressibility.Comment: Submitted to Phys. Rev.

    Designing optimal discrete-feedback thermodynamic engines

    Full text link
    Feedback can be utilized to convert information into useful work, making it an effective tool for increasing the performance of thermodynamic engines. Using feedback reversibility as a guiding principle, we devise a method for designing optimal feedback protocols for thermodynamic engines that extract all the information gained during feedback as work. Our method is based on the observation that in a feedback-reversible process the measurement and the time-reversal of the ensuing protocol both prepare the system in the same probabilistic state. We illustrate the utility of our method with two examples of the multi-particle Szilard engine.Comment: 15 pages, 5 figures, submitted to New J. Phy

    Extended Skyrme interaction (II): ground state of nuclei and of nuclear matter

    Full text link
    We study the effect of time-odd components of the Skyrme energy density functionals on the ground state of finite nuclei and in nuclear matter. The spin-density dependent terms, which have been recently proposed as an extension of the standard Skyrme interaction, are shown to change the total binding energy of odd-nuclei by only few tenths of keV, while the time-odd components of standard Skyrme interactions give an effect that is larger by one order of magnitude. The HFB-17 mass formula based on a Skyrme parametrization is adjusted including the new spin-density dependent terms. A comprehensive study of binding energies in the whole mass table of 2149 nuclei gives a root mean square (rms) deviation of 0.575 MeV between experimental data and the calculated results, which is slightly better than the original HFB-17 mass formula. From the analysis of the spin instabilities of nuclear matter, restrictions on the parameters governing the spin-density dependent terms are evaluated. We conclude that with the extended Skyrme interaction, the Landau parameters G0G_0 and G0â€ČG_0^\prime could be tuned with a large flexibility without changing the ground-state properties in nuclei and in nuclear matter.Comment: 18 pages, 4 tables, 6 figure

    Visible Luminescence from Octadecylsilane Monolayers on Silica Surfaces : Time-Resolved Photoluminescence Characterization

    Get PDF
    blue photoluminescence, nanometer-sized silica particles, time-resolved photoluminescenceWe have found that the adsorption of octadecyltrichlorosilane (OTS) monolayers on nanometer-sized silica particles yields a stable blue photoluminescence (PL) with a time scale of nanoseconds (N. Sagawa and T. Uchino, Appl. Phys. Lett. 87, 251923 (2005)). The observed PL intensity increases after curing at temperatures from 100 to 300 °C, suggesting that condensations between adjacent OTS molecules on the silica surface are related to the PL. The PL decay curve of the cured samples remains unchanged from 77 to 450 K, whereas the time-integrated PL intensity shows a monotonous decrease with increasing temperature. From these experimental results, a model of radiative and nonradiative process associated with the PL is presented

    Study on the Prognosis of Tuberculous Meningitis Treated with Streptomycin in Children

    Get PDF
    ă“ăźè«–æ–‡ăŻć›œç«‹æƒ…ć ±ć­Šç ”ç©¶æ‰€ăźć­ŠèĄ“é›‘èȘŒć…Źé–‹æ”ŻæŽäș‹æ„­ă«ă‚ˆă‚Šé›»ć­ćŒ–ă•ă‚ŒăŸă—ăŸ

    Mechanical and chemical spinodal instabilities in finite quantum systems

    Get PDF
    Self consistent quantum approaches are used to study the instabilities of finite nuclear systems. The frequencies of multipole density fluctuations are determined as a function of dilution and temperature, for several isotopes. The spinodal region of the phase diagrams is determined and it appears that instabilities are reduced by finite size effects. The role of surface and volume instabilities is discussed. It is indicated that the important chemical effects associated with mechanical disruption may lead to isospin fractionation.Comment: 4 pages, 4 figure

    Incompressibility of finite fermionic systems: stable and exotic atomic nuclei

    Get PDF
    The incompressibility of finite fermionic systems is investigated using analytical approaches and microscopic models. The incompressibility of a system is directly linked to the zero-point kinetic energy of constituent fermions, and this is a universal feature of fermionic systems. In the case of atomic nuclei, this implies a constant value of the incompressibility in medium-heavy and heavy nuclei. The evolution of nuclear incompressibility along Sn and Pb isotopic chains is analyzed using global microscopic models, based on both non-relativistic and relativistic energy functionals. The result is an almost constant incompressibility in stable nuclei and systems not far from stability, and a steep decrease in nuclei with pronounced neutron excess, caused by the emergence of a soft monopole mode in neutron-rich nuclei.Comment: 7 pages, 5 figure

    Extended sudden approximation model for high-energy nucleon removal reactions

    Full text link
    A model based on the sudden approximation has been developed to describe high energy single nucleon removal reactions. Within this approach, which takes as its starting point the formalism of Hansen \cite{Anne2}, the nucleon-removal cross section and the full 3-dimensional momentum distributions of the core fragments including absorption, diffraction, Coulomb and nuclear-Coulomb interference amplitudes, have been calculated. The Coulomb breakup has been treated to all orders for the dipole interaction. The model has been compared to experimental data for a range of light, neutron-rich psd-shell nuclei. Good agreement was found for both the inclusive cross sections and momentum distributions. In the case of 17^{17}C, comparison is also made with the results of calculations using the transfer-to-the-continuum model. The calculated 3-dimensional momentum distributions exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction for s-wave states, whilst no such effect is apparent for d-waves. Incomplete detection of transverse momenta arising fromlimited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with significant s-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal momentum distributions attributed to diffractive dissociation are also explored.Comment: 16 figures, submitted to Phys. Rev.
    • 

    corecore