121 research outputs found

    Camera calibration of long image sequences with the presence of occlusions

    Get PDF
    Camera calibration is a critical problem in applications such as augmented reality and image based model reconstruction. When constructing a 3D model of an object from an uncalibrated video sequence, large amounts of frames and self occlusions of parts of the object are common and difficult problems. In this paper we present a fast and robust algorithm that uses a divide and conquer strategy to split the video sequence into sub-sequences containing only the most relevant frames. Then a robust stratified linear based algorithm is able to calibrate each of the subsequences to a metric structure and finally the subsequences are merged together and a final non-linearoptimization refines the solution. Examples of real datareconstructions are presented.Postprint (author’s final draft

    Heat stress develops with increased total-tract gut permeability, and dietary organic acid and pure botanical supplementation partly restores lactation performance in Holstein dairy cows

    Get PDF
    To evaluate the effects of heat stress (HS) conditions and dietary organic acid and pure botanical (OA/PB) supplementation on gut permeability and milk produc- tion, we enrolled 46 multiparous Holstein cows [208 ± 4.65 dry matter intake (DMI; mean ± SD), 3.0 ± 0.42 lactation, 122 ± 4.92 d pregnant, and 39.2 ± 0.26 kg of milk yield] in a study with a completely randomized design. Cows were assigned to 1 of 4 groups: thermo- neutral conditions (TN-Con, n = 12), HS conditions (HS-Con, n = 12), thermoneutral conditions pair-fed to HS-Con (TN-PF, n = 12), or HS supplemented with OA/PB [75 mg/kg of body weight (BW); 25% citric acid, 16.7% sorbic acid, 1.7% thymol, 1.0% vanillin, and 55.6% triglyceride; HS-OAPB, n = 10]. Supple- ments were delivered twice daily by top-dress; all cows not supplemented with OA/PB received an equivalent amount of the triglyceride used for microencapsulation of the OA/PB supplement as a top-dress. Cows were maintained in thermoneutrality [temperature-humidity index (THI) = 68] during a 7-d acclimation and covari- ate period. Thereafter, cows remained in thermoneutral conditions or were moved to HS conditions (THI: diur- nal change 74 to 82) for 14 d. Cows were milked twice daily. Clinical assessments and BW were recorded, blood was sampled, and gastrointestinal permeability measurements were repeatedly evaluated. The mixed model included fixed effects of treatment, time, and their interaction. Rectal and skin temperatures and res- piration rates were greater in HS-Con and HS-OAPB relative to TN-Con. Dry matter intake, water intake, and yields of energy-corrected milk (ECM), protein, and lactose were lower in HS-Con relative to HS-OAPB. Nitrogen efficiency was improved in HS-OAPB relative to HS-Con. Compared with TN-Con and TN-PF, milk yield and ECM were lower in HS-Con cows. Total- tract gastrointestinal permeability measured at d 3 of treatment was greater in HS-Con relative to TN-Con or TN-PF. Plasma total fatty acid concentrations were reduced, whereas insulin concentrations were increased in HS-Con relative to TN-PF. We conclude that expo- sure to a heat-stress environment increases total-tract gastrointestinal permeability. This study highlights important mechanisms that might account for milk production losses caused by heat stress, independent of changes in DMI. Our observations also suggest that dietary supplementation of OA/PB is a means to partly restore ECM production and improve nitrogen efficiency in dairy cattle experiencing heat stress

    Predicting River Macroinvertebrate Communities Distributional Shifts under Future Global Change Scenarios in the Spanish Mediterranean Area

    Get PDF
    Several studies on global change over the next century predict increases in mean air temperatures of between 1°C to 5°C that would affect not only water temperature but also river flow. Climate is the predominant environmental driver of thermal and flow regimes of freshwater ecosystems, determining survival, growth, metabolism, phenology and behaviour as well as biotic interactions of aquatic fauna. Thus, these changes would also have consequences for species phenology, their distribution range, and the composition and dynamics of communities. These effects are expected to be especially severe in the Mediterranean basin due its particular climate conditions, seriously threatening Southern European ecosystems. In addition, species with restricted distributions and narrow ecological requirements, such as those living in the headwaters of rivers, will be severely affected. The study area corresponds to the Spanish Mediterranean and Balearic Islands, delimited by the Köppen climate boundary. With the application of the MEDPACS (MEDiterranean Prediction And Classification System) predictive approach, the macroinvertebrate community was predicted for current conditions and compared with three posible scenarios of watertemperature increase and its associated water flow reductions. The results indicate that the aquatic macroinvertebrate communities will undergo a drastic impact, with reductions in taxa richness for each scenario in relation to simulated current conditions, accompanied by changes in the taxa distribution pattern. Accordingly, the distribution area of most of the taxa (65.96%) inhabiting the mid-high elevations would contract and rise in altitude. Thus, families containing a great number of generalist species will move upstream to colonize new zones with lower water temperatures. By contrast, more vulnerable taxa will undergo reductions in their distribution area.This work was funded by GUADALMED-II (REN2001-3438-C07-06/HID), a project of excellence from “Junta de Andalucía” (RNM-02654/FEDER), the Spanish “Ministerio de Ciencia e Innovación” (CGL2007-61856/BOS), projects and a collaboration agreement between the “Spanish Ministerio de Medio Ambiente, Medio Rural y Marino” and the University of Granada (21.812-0062/8511)

    Functional upgrading in China’s export processing sector

    Get PDF
    Functional upgrading occurs when a firm acquires more sophisticated functions within an existing value chain. In this paper, we analyze if there is evidence of this type of upgrading in China’s export processing regime by investigating dynamics in the relative prevalence of Import & Assembly (IA) versus Pure Assembly (PA) processing trade over the period 2000-2013. Firms in both regimes provide similar manufacturing services to foreign companies, but IA firms also conduct the sophisticated tasks of quality control, searching, financing and storing imported materials. Consistent with a trend of functional upgrading, we show that the share of IA trade in total processing trade has increased rapidly during the period 2000-2006, both overall and within product categories. Furthermore, we find that this trend has gone hand in hand with improvements in a sector’s labor productivity and unit values. Against expectations, we find that this process has slowed down notably during the period 2006-2013.status: publishe

    Leptin Reduces the Expression and Increases the Phosphorylation of the Negative Regulators of GLUT4 Traffic TBC1D1 and TBC1D4 in Muscle of ob/ob Mice

    Get PDF
    Leptin improves insulin sensitivity in skeletal muscle. Our goal was to determine whether proteins controlling GLUT4 traffic are altered by leptin deficiency and in vivo leptin administration in skeletal muscle of wild type and ob/ob mice. Leptin-deficient ob/ob mice were divided in three groups: control, leptin-treated (1 mg/kg/d) and leptin pair-fed ob/ob mice. Microarray analysis revealed that 1,546 and 1,127 genes were regulated by leptin deficiency and leptin treatment, respectively. Among these, we identified 24 genes involved in intracellular vesicle-mediated transport in ob/ob mice. TBC1 domain family, member 1 (Tbc1d1), a negative regulator of GLUT4 translocation, was up-regulated (P = 0.001) in ob/ob mice as compared to wild types. Importantly, leptin treatment reduced the transcript levels of Tbc1d1 (P<0.001) and Tbc1d4 (P = 0.004) in the leptin-treated ob/ob as compared to pair-fed ob/ob animals. In addition, phosphorylation levels of TBC1D1 and TBC1D4 were enhanced in leptin-treated ob/ob as compared to control ob/ob (P = 0.015 and P = 0.023, respectively) and pair-fed ob/ob (P = 0.036 and P = 0.034, respectively) mice. Despite similar GLUT4 protein expression in wild type and ob/ob groups a different immunolocalization of this protein was evidenced in muscle sections. Leptin treatment increased GLUT4 immunoreactivity in gastrocnemius and extensor digitorum longus sections of leptin-treated ob/ob mice. Moreover, GLUT4 protein detected in immunoprecipitates from TBC1D4 was reduced by leptin replacement compared to control ob/ob (P = 0.013) and pair-fed ob/ob (P = 0.037) mice. Our findings suggest that leptin enhances the intracellular GLUT4 transport in skeletal muscle of ob/ob animals by reducing the expression and activity of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4

    Functional Evolution of Leptin of Ochotona curzoniae in Adaptive Thermogenesis Driven by Cold Environmental Stress

    Get PDF
    BACKGROUND: Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae), an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C) and cold (5±1°C) acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau

    Leptin Administration Favors Muscle Mass Accretion by Decreasing FoxO3a and Increasing PGC-1α in ob/ob Mice

    Get PDF
    Absence of leptin has been associated with reduced skeletal muscle mass in leptin-deficient ob/ob mice. The aim of our study was to examine the effect of leptin on the catabolic and anabolic pathways regulating muscle mass. Gastrocnemius, extensor digitorum longus and soleus muscle mass as well as fiber size were significantly lower in ob/ob mice compared to wild type littermates, being significantly increased by leptin administration (P<0.001). This effect was associated with an inactivation of the muscle atrophy-related transcription factor forkhead box class O3 (FoxO3a) (P<0.05), and with a decrease in the protein expression levels of the E3 ubiquitin-ligases muscle atrophy F-box (MAFbx) (P<0.05) and muscle RING finger 1 (MuRF1) (P<0.05). Moreover, leptin increased (P<0.01) protein expression levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a regulator of muscle fiber type, and decreased (P<0.05) myostatin protein, a negative regulator of muscle growth. Leptin administration also activated (P<0.01) the regulators of cell cycle progression proliferating cell nuclear antigen (PCNA) and cyclin D1, and increased (P<0.01) myofibrillar protein troponin T. The present study provides evidence that leptin treatment may increase muscle mass of ob/ob mice by inhibiting myofibrillar protein degradation as well as enhancing muscle cell proliferation
    corecore