1,022 research outputs found

    The time-lag -- photon-index correlation in GX 339--4

    Full text link
    Black-hole transients exhibit a correlation between the time lag of hard photons with respect to softer ones and the photon index of the hard X-ray power law. The correlation is not very tight and therefore it is necessary to examine it source by source. The objective of the present work is to investigate in detail the time-lag -- photon-index correlation in GX 339-4. We have obtained RXTE energy spectra and light curves and have computed the photon index and the time lag of the 9159 - 15 keV photons with respect to the 262 - 6 keV ones. The observations cover the first stages of the hard state, the pure hard state, and the hard-intermediate state. At low Γ\Gamma, the correlation is positive and it becomes negative at large Γ\Gamma. By assuming that the hard X-ray power law index Γ\Gamma is produced by inverse Compton scattering of soft disk photons in the jet, we have reproduced the entire correlation by varying two parameters in the jet: the radius of the jet at its base R0R_0 and the Thomson optical depth along the jet τ\tau_\parallel. We have found that, as the luminosity of the source increases, R0R_0 initially increases and then decreases. This behavior is expected in the context of the Cosmic Battery. As a further test of our model, we predict the break frequency in the radio spectrum as a function of the photon index during the rising part of an outburst

    Aperiodic variability of low-mass X-ray binaries at very low frequencies

    Get PDF
    We have obtained discrete Fourier power spectra of a sample of persistent low-mass neutron-star X-ray binaries using long-term light curves from the All Sky Monitor on board the Rossi X-ray Timing Explorer. Our aim is to investigate their aperiodic variability at frequencies in the range 1 x 10^{-7}-5 x 10^{-6} Hz and compare their properties with those of the black-hole source Cyg X-1. We find that the classification scheme that divides LMXBs into Z and atoll sources blurs at very low frequencies. Based on the long-term (~ years) pattern of variability and the results of power-law fits (P ~ v^{-a}) to the 1 x 10^{-7}-5 x 10^{-6} Hz power density spectra, low-mass neutron-star binaries fall into three categories. Type I includes all Z sources, except Cyg X-2, and the atoll sources GX9+1 and GX13+1. They show relatively flat power spectra (a < 0.9) and low variability (rms < 20%). Type II systems comprise 4U 1636-53, 4U 1735-44 and GX3+1. They are more variable (20% < rms < 30%) and display steeper power spectra (0.9 < a < 1.2) than Type I sources. Type III systems are the most variable (rms > 30%) and exhibit the steepest power spectra (a > 1.2). The sources 4U 1705-44, GX354-0 and 4U 1820-30 belong to this group. GX9+9 and Cyg X-2 appear as intermediate systems in between Type I and II and Type II and III sources, respectively. We speculate that the differences in these systems may be caused by the presence of different types of mass-donor companions. Other factors, like the size of the accretion disc and/or the presence of weak magnetic fields, are also expected to affect their low-frequency X-ray aperiodic varibility.Comment: 9 pages, 6 figures. To be published in A&

    Inclination effects on the X-ray emission of Galactic black-hole binaries

    Full text link
    Galactic black-hole X-ray binaries (BHBs) emit a compact, optically thick, mildly relativistic radio jet when they are in the hard and hard-intermediate states. In these states, BHBs exhibit a correlation between the time lag of hard photons with respect to softer ones and the photon index of the power law component that characterizes the X-ray spectral continuum above \sim 10 keV. The correlation, however, shows large scatter. Our objective is to investigate the role that the inclination of the system plays on the correlation between the time lag and the photon index. We find that the correlation between the time lag and the photon index is tight in low-inclination systems and becomes weaker in high-inclination systems. The amplitude of the lags is also larger at low and intermediate inclination angles than at high inclination. Our jet model that reproduces the process of Comptonization in an extended jet can account for the observations remarkably well

    The high optical polarization in the Be/X-ray binary EXO 2030+375

    Full text link
    Polarization in classical Be stars results from Thomson scattering of the unpolarized light from the Be star in the circumstellar disc. Theory and observations agree that the maximum degree of polarization from isolated Be stars is < 4%. We report on the first optical polarimetric observations of the Be/X-ray binary EXO\,2030+375. We find that the optical (R band) light is strongly linearly polarized with a degee of polarization of 19%, the highest ever measured either in a classical or Be/X-ray binary. We argue that the interstellar medium cannot account for this high polarization degree and that a substantial amount must be intrinsic to the source. We propose that it may result from the alignment of non-spherical ferromagnetic grains in the Be star disc due to the strong neutron star magnetic field.Comment: to be published in MNRA

    The SMC X-ray transient XTE J0111.2-7317 : a Be/X-ray binary in a SNR?

    Get PDF
    We report observations which confirm the identity of the optical/IR counterpart to the Rossi X-ray Timing Explorer transient source XTE J0111.2-7317. The counterpart is suggested to be a B0-B2 star (luminosity class III--V) showing an IR excess and strong Balmer emission lines. The distance derived from reddening and systemic velocity measurements puts the source in the SMC. Unusually, the source exhibits an extended asymetric H alpha structure.Comment: 5 pages, 3 figs, accepted by MNRA

    A jet model for black-hole X-ray sources

    Get PDF
    A jet model for Galactic black-hole X-ray binaries will be presented that appears to explain several observational characteristics. In particular, it explains the energy spectrum from radio to hard X-rays, the time-lags as a function of Fourier frequency, the increase of the variability amplitude (QPO and high frequency) with increasing photon energy, and the narrowing of the autocorrelation function with increasing photon energy. On the other hand, there are additional observational constraints that no model has tried to explain yet. It is important that we all try to address these constraints if we are to make any progress in understanding black-hole X-ray source

    Orbital Comptonization in accretion disks around black holes

    Get PDF
    We have performed Monte Carlo simulations of Compton upscattering of low-energy photons in an accretion disk around a Schwarzschild black hole. The photons gain energy from the rotational motion of the electrons in the disk. The upscattering occurs near the black hole horizon, where the flow velocity of the electrons approaches the speed of light. We show that this type of bulk-flow Comptonization can produce power-law X-ray spectra similar to the ones observed in black-hole X-ray transients in the high/soft state, i.e., a soft bump dominating the spectrum below ~ 10 keV and a power-law tail with photon index in the range 2-3. In order to reproduce the observed hard to soft flux ratio the disk has to have vertical optical depth above ~ 3 at the last stable orbit. We conclude that the power-law component of the high/soft state of black-hole transients may be due to an intrinsically cool disk extending all the way to the hole, without a separate hot plasma component

    XMM-Newton observation of the persistent Be/NS X-ray binary pulsar RX J1037.5-5647 in a low luminosity state

    Get PDF
    The spectra of several X-ray binary pulsars display a clear soft excess, which in most cases can be described with a blackbody model, above the main power-law component. While in the high-luminosity sources it is usually characterized by low temperature (kT 100 km), in the two persistent and low-luminosity pulsars 4U 0352+309 and RX J0146.9+6121 this component has a high temperature (kT > 1 keV) and a smaller radius (R < 0.5 km), consistent with the estimated size of the neutron-star polar cap. Here we report on the timing and spectral analysis of RX J1037.5-5647, another low-luminosity persistent Be binary pulsar, based on the first XMM-Newton observation of this source. We have found a best-fit period P = 853.4(+/-0.2) s, that implies an average pulsar spin-up dP/dt ~ -2E-8 s/s in the latest decade. The estimated source luminosity is Lx ~ 10^34 erg/s, a value comparable to that of the other persistent Be binary pulsars and about one order of magnitude lower than in most of the previous measurements. The source spectrum can be described with a power law plus blackbody model, with kTbb = 1.26(+0.16/-0.09) keV and Rbb = 128(+13/-21) m, suggesting a polar-cap origin of this component. These results strengthen the hypothesis that, in addition to low luminosities and long periods, this class of sources is characterized also by common spectral propertiesComment: 9 pages, 8 figures, 2 tables. Accepted for publication by Astronomy and Astrophysic
    corecore