808 research outputs found

    Characterization of whole blood gene expression profiles as a sequel to globin mRNA reduction in patients with sickle cell disease

    Get PDF
    Global transcriptome analysis of whole blood RNA using microarrays has been proven to be challenging due to the high abundance of globin transcripts that constitute 70% of whole blood mRNA. This is a particular problem in patients with sickle cell disease, secondary to the high abundance of globin-expressing nucleated red blood cells and reticulocytes in the circulation. In order to accurately measure the steady state blood transcriptome in sickle cell patients we evaluated the efficacy of reducing globin transcripts in PAXgene stabilized RNA for genome-wide transcriptome analyses using microarrays. We demonstrate here by both microarrays and Q-PCR that the globin mRNA depletion method resulted in 55-65 fold reduction in globin transcripts in whole blood collected from healthy volunteers and sickle cell disease patients. This led to an improvement in microarray data quality by reducing data variability, with increased detection rate of expressed genes and improved overlap with the expression signatures of isolated peripheral blood mononuclear (PBMC) preparations. Analysis of differences between the whole blood transcriptome and PBMC transcriptome revealed important erythrocyte genes that participate in sickle cell pathogenesis and compensation. The combination of globin mRNA reduction after whole-blood RNA stabilization represents a robust clinical research methodology for the discovery of biomarkers for hematologic diseases

    Balancing Minimum Spanning and Shortest Path Trees

    Full text link
    This paper give a simple linear-time algorithm that, given a weighted digraph, finds a spanning tree that simultaneously approximates a shortest-path tree and a minimum spanning tree. The algorithm provides a continuous trade-off: given the two trees and epsilon > 0, the algorithm returns a spanning tree in which the distance between any vertex and the root of the shortest-path tree is at most 1+epsilon times the shortest-path distance, and yet the total weight of the tree is at most 1+2/epsilon times the weight of a minimum spanning tree. This is the best tradeoff possible. The paper also describes a fast parallel implementation.Comment: conference version: ACM-SIAM Symposium on Discrete Algorithms (1993

    High pressure diamond-like liquid carbon

    Get PDF
    We report density-functional based molecular dynamics simulations, that show that, with increasing pressure, liquid carbon undergoes a gradual transformation from a liquid with local three-fold coordination to a 'diamond-like' liquid. We demonstrate that this unusual structural change is well reproduced by an empirical bond order potential with isotropic long range interactions, supplemented by torsional terms. In contrast, state-of-the-art short-range bond-order potentials do not reproduce this diamond structure. This suggests that a correct description of long-range interactions is crucial for a unified description of the solid and liquid phases of carbon.Comment: 4 pages, 5 figure

    Carbon clusters near the crossover to fullerene stability

    Get PDF
    The thermodynamic stability of structural isomers of C24\mathrm{C}_{24}, C26\mathrm{C}_{26}, C28\mathrm{C}_{28} and C32\mathrm{C}_{32}, including fullerenes, is studied using density functional and quantum Monte Carlo methods. The energetic ordering of the different isomers depends sensitively on the treatment of electron correlation. Fixed-node diffusion quantum Monte Carlo calculations predict that a C24\mathrm{C}_{24} isomer is the smallest stable graphitic fragment and that the smallest stable fullerenes are the C26\mathrm{C}_{26} and C28\mathrm{C}_{28} clusters with C2v\mathrm{C}_{2v} and Td\mathrm{T}_{d} symmetry, respectively. These results support proposals that a C28\mathrm{C}_{28} solid could be synthesized by cluster deposition.Comment: 4 pages, includes 4 figures. For additional graphics, online paper and related information see http://www.tcm.phy.cam.ac.uk/~prck

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al

    A new ab initio ground-state dipole moment surface for the water molecule

    Get PDF
    A valence-only (V) dipole moment surface (DMS) has been computed for water at the internally contracted multireference configuration interaction level using the extended atom-centered correlation-consistent Gaussian basis set aug-cc-pV6Z. Small corrections to these dipole values, resulting from core correlation (C) and relativistic (R) effects, have also been computed and added to the V surface. The resulting DMS surface is hence called CVR. Interestingly, the C and R corrections cancel out each other almost completely over the whole grid of points investigated. The ground-state CVR dipole of H(2) (16)O is 1.8676 D. This value compares well with the best ab initio one determined in this study, 1.8539+/-0.0013 D, which in turn agrees well with the measured ground-state dipole moment of water, 1.8546(6) D. Line intensities computed with the help of the CVR DMS shows that the present DMS is highly similar to though slightly more accurate than the best previous DMS of water determined by Schwenke and Partridge [J. Chem. Phys. 113, 16 (2000)]. The influence of the precision of the rovibrational wave functions computed using different potential energy surfaces (PESs) has been investigated and proved to be small, due mostly to the small discrepancies between the best ab initio and empirical PESs of water. Several different measures to test the DMS of water are advanced. The seemingly most sensitive measure is the comparison between the ab initio line intensities and those measured by ultralong pathlength methods which are sensitive to very weak transitions

    Vibrational signatures for low-energy intermediate-sized Si clusters

    Get PDF
    We report low-energy locally stable structures for the clusters Si20 and Si21. The structures were obtained by performing geometry optimizations within the local density approximation. Our calculated binding energies for these clusters are larger than any previously reported for this size regime. To aid in the experimental identification of the structures, we have computed the full vibrational spectra of the clusters, along with the Raman and IR activities of the various modes using a recently developed first-principles technique. These represent, to our knowledge, the first calculations of Raman and IR spectra for Si clusters of this size
    • …
    corecore