This paper give a simple linear-time algorithm that, given a weighted
digraph, finds a spanning tree that simultaneously approximates a shortest-path
tree and a minimum spanning tree. The algorithm provides a continuous
trade-off: given the two trees and epsilon > 0, the algorithm returns a
spanning tree in which the distance between any vertex and the root of the
shortest-path tree is at most 1+epsilon times the shortest-path distance, and
yet the total weight of the tree is at most 1+2/epsilon times the weight of a
minimum spanning tree. This is the best tradeoff possible. The paper also
describes a fast parallel implementation.Comment: conference version: ACM-SIAM Symposium on Discrete Algorithms (1993