We report density-functional based molecular dynamics simulations, that show
that, with increasing pressure, liquid carbon undergoes a gradual
transformation from a liquid with local three-fold coordination to a
'diamond-like' liquid. We demonstrate that this unusual structural change is
well reproduced by an empirical bond order potential with isotropic long range
interactions, supplemented by torsional terms. In contrast, state-of-the-art
short-range bond-order potentials do not reproduce this diamond structure. This
suggests that a correct description of long-range interactions is crucial for a
unified description of the solid and liquid phases of carbon.Comment: 4 pages, 5 figure