91 research outputs found

    Bayesian estimation of multiple clade competition from fossil data

    Get PDF
    Background: The diversification dynamics of clades is governed by speciation and extinction processes and is likely affected by multiple biotic, abiotic, and stochastic factors. Using quantitative methods to analyse fossil occurrence data, one may infer rates of speciation and extinction in a Bayesian framework. Moreover, Silvestro et al. (2015a) recently developed a Multiple Clade Diversity Dependence birth-death model (MCDD) to determine whether diversification dynamics can be explained by positive or negative effects of interactions within or between co-existing clades. However, the power and accuracy of this model and its general applicability have yet to be thoroughly investigated. Aims: Explore the properties of the existing MCDD implementation, which is based on Bayesian variable selection. Introduce an alternative parameterization based on the Horseshoe prior and show the properties of this approach for Bayesian shrinkage in complex models. Test the ability of the model to correctly identify within and between diversification interference under a suite of different diversification scenarios. Methods: Use simulations to assess and compare the power and accuracy of the two algorithms. Results: Diversity dependence within and between clades can be inferred with confidence in a wide range of scenarios using the MCDD model. The two implementations provide comparable results, but the new Horseshoe prior estimator appears to be more reliable, albeit slightly more conservative. The MCDD model is a powerful framework to analyse the putative effects of ecological interactions on macroevolutionary dynamics using fossil data and provides a sound statistical basis for future method developments

    The Molecular Phylogenetic Signature of Clades in Decline

    Get PDF
    Molecular phylogenies have been used to study the diversification of many clades. However, current methods for inferring diversification dynamics from molecular phylogenies ignore the possibility that clades may be decreasing in diversity, despite the fact that the fossil record shows this to be the case for many groups. Here we investigate the molecular phylogenetic signature of decreasing diversity using the most widely used statistic for inferring diversity dynamics from molecular phylogenies, the γ statistic. We show that if a clade is in decline its molecular phylogeny may show evidence of the decrease in the diversification rate that occurred between its diversification and decline phases. The ability to detect the change in diversification rate depends largely on the ratio of the speciation rates of the diversification and decline phases, the higher the ratio the stronger the signal of the change in diversification rate. Consequently, molecular phylogenies of clades in relative rapid decline do not carry a signature of their decreasing diversification. Further, the signal of the change in diversification rate, if present, declines as the diversity drop. Unfortunately, the molecular signature of clades in decline is the same as the signature produced by diversity dependent diversification. Given this similarity, and the inability of current methods to detect declining diversity, it is likely that some of the extant clades that show a decrease in diversification rate, currently interpreted as evidence for diversity dependent diversification, are in fact in decline. Unless methods can be developed that can discriminate between the different modes of diversification, specifically diversity dependent diversification and declining diversity, we will need the fossil record, or data from some other source, to distinguish between these very different diversity trajectories

    The two tryptophans of β2-microglobulin have distinct roles in function and folding and might represent two independent responses to evolutionary pressure

    Get PDF
    We have recently discovered that the two tryptophans of human β2-microglobulin have distinctive roles within the structure and function of the protein. Deeply buried in the core, Trp95 is essential for folding stability, whereas Trp60, which is solvent-exposed, plays a crucial role in promoting the binding of β2-microglobulin to the heavy chain of the class I major histocompatibility complex (MHCI). We have previously shown that the thermodynamic disadvantage of having Trp60 exposed on the surface is counter-balanced by the perfect fit between it and a cavity within the MHCI heavy chain that contributes significantly to the functional stabilization of the MHCI. Therefore, based on the peculiar differences of the two tryptophans, we have analysed the evolution of β2-microglobulin with respect to these residues

    Diversity dynamics in New Caledonia: towards the end of the museum model?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The high diversity of New Caledonia has traditionally been seen as a result of its Gondwanan origin, old age and long isolation under stable climatic conditions (the museum model). Under this scenario, we would expect species diversification to follow a constant rate model. Alternatively, if New Caledonia was completely submerged after its breakup from Gondwana, as geological evidence indicates, we would expect species diversification to show a characteristic slowdown over time according to a diversity-dependent model where species accumulation decreases as space is filled.</p> <p>Results</p> <p>We reanalyze available datasets for New Caledonia and reconstruct the phylogenies using standardized methodologies; we use two ultrametrization alternatives; and we take into account phylogenetic uncertainty as well as incomplete taxon sampling when conducting diversification rate constancy tests. Our results indicate that for 8 of the 9 available phylogenies, there is significant evidence for a diversification slowdown. For the youngest group under investigation, the apparent lack of evidence of a significant slowdown could be because we are still observing the early phase of a logistic growth (i.e. the clade may be too young to exhibit a change in diversification rates).</p> <p>Conclusions</p> <p>Our results are consistent with a diversity-dependent model of diversification in New Caledonia. In opposition to the museum model, our results provide additional evidence that original New Caledonian biodiversity was wiped out during the episode of submersion, providing an open and empty space facilitating evolutionary radiations.</p

    Splitting and blaming: The psychic life of neoliberal executive women

    Get PDF
    The aim of the article is to explore the psychic life of executive women under neoliberalism using psychosocial approaches. The article shows how, despite enduring unfair treatment and access to opportunities, many executive women remain emotionally invested in upholding the neoliberal ideal that if one perseveres, one shall be successful, regardless of gender. Drawing on psychosocial approaches, we explore how the accounts given by some executive women of repudiation, as denying gender inequality, and individualization, as subjects completely agentic, are underpinned by the unconscious, intertwined processes of splitting and blaming. Women sometimes split off undesirable aspects of the workplace, which repudiates gender inequality, or blame other women, which individualizes failure and responsibility for change. We explain that splitting and blaming enable some executive women to manage the anxiety evoked from threats to the neoliberal ideal of the workplace. This article thereby makes a contribution to existing postfeminist scholarship by integrating psychosocial approaches to the study of the psychic life of neoliberal executive women, by exploring why they appear unable to engage directly with and redress instances of gender discrimination in the workplace

    Climatic and topographic changes since the Miocene influenced the diversification and biogeography of the tent tortoise (Psammobates tentorius) species complex in Southern Africa

    Get PDF
    Background: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of the world’s tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa. Results: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63–5.33 Ma) when populations dispersed from north to south to form two geographically isolated groups. The northern group diverged into a clade north of the Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The latter divergence corresponded to the intensifcation of the cold Benguela current, which caused western aridifcation and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fuctuations seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade occurred in a habitat shaped by diferent climatic parameters, and that the niches difered substantially among the clades of the northern group but were similar among clades of the southern group. Conclusion: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B–Ptr, Ptt-A and Pv-

    Mesozoic mass extinctions and angiosperm radiation: does the molecular clock tell something new?

    Get PDF
    Angiosperms evolved rapidly in the late Mesozoic. Data from the genetic-based approach called ’molecular clock’ permit an evaluation of the radiation of flowering plants through geological time and of the possible influences of Me -sozoic mass extinctions. A total of 261 divergence ages of angiosperm families are considered. The radiation of flowe -ring plants peaked in the Albian, early Campanian, and Maastrichtian. From the three late Mesozoic mass extinctions (Jurassic/Cretaceous, Cenomanian/Turonian, and Cretaceous/Palaeogene), only the Cretaceous/Palaeogene event coincided with a significant, abrupt, and long-term decline in angiosperm radiation. If their link will be further pro -ven, this means that global-scale environmental perturbation precluded from many innovations in the development of plants. This decline was, however, not unprecedented in the history of the angiosperms. The implication of data from the molecular clock for evolutionary reconstructions is limited, primarily because this approach deals with only extant lineages
    corecore