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ABSTRACT

Background: The diversification dynamics of clades is governed by speciation and extinction
processes and is likely affected by multiple biotic, abiotic, and stochastic factors. Using
quantitative methods to analyse fossil occurrence data, one may infer rates of speciation and
extinction in a Bayesian framework. Moreover, Silvestro et al. (2015a) recently developed a
Multiple Clade Diversity Dependence birth–death model (MCDD) to determine whether
diversification dynamics can be explained by positive or negative effects of interactions within
or between co-existing clades. However, the power and accuracy of this model and its general
applicability have yet to be thoroughly investigated.

Aims: Explore the properties of the existing MCDD implementation, which is based on Bayesian
variable selection. Introduce an alternative parameterization based on the Horseshoe prior and
show the properties of this approach for Bayesian shrinkage in complex models. Test the ability
of the model to correctly identify within and between diversification interference under a suite
of different diversification scenarios.

Methods: Use simulations to assess and compare the power and accuracy of the two algorithms.
Results: Diversity dependence within and between clades can be inferred with confidence in a

wide range of scenarios using the MCDD model. The two implementations provide comparable
results, but the new Horseshoe prior estimator appears to be more reliable, albeit slightly more
conservative. The MCDD model is a powerful framework to analyse the putative effects of
ecological interactions on macroevolutionary dynamics using fossil data and provides a sound
statistical basis for future method developments.
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INTRODUCTION

Biodiversity patterns are largely influenced by ecological interactions at the local and
regional scales. Although this is well accepted in the environmental sciences in general, the
role of biotic interactions in shaping diversification over longer temporal and spatial scales
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is often questioned (Benton, 1996, 2009). There has been renewed interest recently in the role
of biotic components in determining changes in biodiversity over evolutionary and geologic
time scales (Quental and Marshall, 2013; Barraclough, 2015; Liow et al., 2015; Voje et al., 2015; Ezard et al., 2016). Work
on the macroevolutionary dynamics of different groups, including mammalian carnivores
(Silvestro et al., 2015a) and marine invertebrates (Castiglione et al., 2017), suggests that ecological
interactions among different lineages can shape diversification by affecting the rates of
origination and extinction. When many ecologically similar taxa co-occur in a resource-
limited environment, populations ought to be smaller, increasing the risk of extinction and
decreasing the likelihood that a newly originating taxon establishes. This is the principle that
links evolutionary radiations to the availability of ecological opportunities (Gavrilets and Losos,

2009) and underlies the notion that we should expect the net diversification to decrease as
diversity builds up (Jablonski, 2008). Although finding evidence of interactions between extinct
species in the fossil record is challenging (if not impossible) for most groups, the rise and fall
of clades through time may allow us to infer the probability that the diversification of one
lineage interfered with the diversification of other lineages that overlap in space and time
(Sepkoski, 1996b; Van Valkenburgh, 1999). The main challenge palaeoecologists and evolutionary
biologists have to face when studying the effect of lineages on each other’s diversification
is to uncover the relationships between lineages while taking into account the sampling
incompleteness inherent to the fossil record. Further difficulties are linked to the
uncertainty in dating fossil occurrences.

A recently developed method, PyRate (Silvestro et al., 2014a), allows speciation and extinction
rates to be estimated from the fossil record under a probabilistic analytical framework
that takes into account fossil preservation (Silvestro et al., 2014b). The introduction of the
PyRate probabilistic framework opened the possibility for a range of new analyses and
reconstructions of macroevolutionary processes using palaeontological data. For instance,
this method can reveal speciation and extinction dynamics driving the rise and decline of
entire clades (Pires et al., 2015), assess correlations between the evolution of a continuous trait
(e.g. body size) and changes in diversification rates (Silvestro et al., 2014a), and infer the strength
and selectivity of mass extinctions through time (Silvestro et al., 2015b).

Recent methodological developments expanded the suite of diversification models avail-
able in PyRate by introducing birth–death models with diversity dependence in an attempt
to determine whether evidence of competition could be detected from fossil data (Silvestro et al.,

2015a). Evidence of diversity dependence (Alroy, 1996, 2008; Ezard et al., 2011; Liow and Finarelli, 2014;

Silvestro et al., 2015a) has been interpreted as the result of ecological mechanisms that could
either limit the opportunity for speciation or increase the chance of extinction (Rosenzweig, 1975;

Sepkoski, 1978; Levinton, 1979; Walker and Valentine, 1984; Yoder et al., 2010). It is important to note that a
simple decline in speciation rate, albeit congruent with, is not enough evidence in favour of
mechanisms of ecological saturation (Cornell, 2013; Moen and Morlon, 2014; Marshall and Quental, 2016).
Conversely, diversity trajectories other than a stationary number of species can also be
explained by diversity dependence mechanisms (Cornell, 2013; Quental and Marshall, 2013; Rabosky, 2013;

Marshall and Quental, 2016). Therefore, effective discrimination of diversity dependence from
simple decreases in diversification rates may be difficult from the analysis of phylogenies of
extant taxa (Bokma, 2009; Marshall and Quental, 2016).

Under the typical diversity dependence scenario (Etienne et al., 2012), the net diversification
of a clade declines as its standing diversity increases. Going beyond the assumption that
competitive effects only take place within clades (typical in phylogenetic comparative
methods), a recently described extension of the PyRate framework allows testing of
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whether the diversification dynamics of a lineage respond to the interference, either by
negative (e.g. competitive interactions) or positive effects (e.g. co-evolution and diversifica-
tion of host and parasites or symbiotic organisms), from its own standing diversity or the
diversity of co-occurring clades (Silvestro et al., 2015a). This model, named Multiple Clade
Diversity Dependence (MCDD), assumes that speciation and extinction rates of a clade can
vary through time as a function of diversity changes. It was initially inspired by the possibil-
ity that a given clade could actively drive another to extinction (Sepkoski, 1996a) or to infer the
effect of an incumbent lineage on the diversification dynamics of younger clades (Rosenzweig

and McCord, 1991; Benton, 1996). Given the potential, but yet disputed, significance of such macro-
evolutionary scenarios, a statistical model that could properly detect such mechanisms is
desirable. The original proposition of this method was tested through simulations focusing
on the frequency of false positives (Silvestro et al., 2015a). However, these simulations were
limited in that they were designed to reflect the nature and size of the empirical data set
of eight clades analysed in that study, but lacked a more general and thorough assessment
of the method on a broad range of datasets. Furthermore, the power of the method to
recover true diversity dependence effects was not addressed due to difficulties in simulating
data under the assumptions of the MCDD model.

Here, we present a broad set of simulations aiming to address the properties of the MCDD
model in a general context. We explore the ability of the MCDD model to correctly identify
diversity dependence effects and interference within and between lineages on diversification
dynamics. Furthermore, we propose a novel implementation of the MCDD model under
a different parameterization using a ‘Horseshoe prior’ [HSP (Carvalho et al., 2010)] on the
diversity dependence parameters as an alternative to the Bayesian variable selection (BVS)
algorithm proposed in the original implementation. We demonstrate that the MCDD
model, and in particular its new implementation based on HSP, can robustly infer diversity
dependence within and between clades from fossil data in a wide spectrum of diversification
scenarios.

METHODS

The birth–death model

Let us consider a set of N fossil species, each with a lifespan defined by its time of speciation
s and time of extinction e. In our notation, the ages of all events are measured as time before
the present, so that s > e and extant species are indicated with e = 0. Previous work has
shown that times of speciation and extinction of taxa sampled in the palaeontological
record can be estimated based on fossil occurrence data by modelling the preservation
process (Silvestro et al., 2014b). The temporal distribution of the times of speciation and extinc-
tion (s = {s1, . . . , sN}, e = {e1, . . . , eN}) is modelled as the result of an underlying birth–death
process, with parameters λ and µ indicating the expected number of speciation and extinc-
tion events per lineage per unit of time [e.g. Myr (Silvestro et al., 2014b)]. Within any given time
frame τ = {ti, ti ++ 1} (where ti > ti ++ 1), the likelihood of a birth-death process is:

P(s, e | λ, µ, τ) ∝ λB� µD� e−(� + �)S�, (1)

where B� and D� are the number of speciation and extinction events occurring within the
time frame τ and S� represents the sum of species life spans within the time frame (Keiding,

1975; Silvestro et al., 2014b):
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Sτ = �
N

n = 1

 �min(sn, ti) − max(en, ti ++ 1)�. (2)

We can incorporate temporal variation of speciation and extinction rates in the model by
introducing different time frames and assigning independent rates to each of them. Time
frames can be fixed a priori (Silvestro et al., 2015b) or estimated from the data (Silvestro et al., 2014b).
For a given set of T time frames, the likelihood of a birth–death process is:

P(s, e | λ, µ, T) ∝ �
T

�
�λ

B�

� exp (−λ�S� )� �
T

�

 �µ
D�

� exp (−µ�S� )�, (3)

where λ� and µ� are the speciation and extinction rates in each time frame (Silvestro et al., 2014b).

Multiple clade diversity dependence

Let us define as δi the diversity trajectory of a clade i, so that δi(t) represents its standing
diversity at time t. The MCDD model uses a time varying birth–death model (equation 3) in
which the time frames of rate change are defined by changes in the diversity trajectories of
the clades considered. Diversity dependence is modelled by a linear correlation between
speciation and extinction rates and a diversity trajectory (Etienne et al., 2012; Silvestro et al., 2015a).
The diversity trajectories of multiple clades are jointly analysed to assess the existence of
diversity dependence effects. Thus, in a set of C clades with diversity trajectories D = {δ1,
δ2, . . . , δC}, the speciation and extinction rates for a given clade i at time t are obtained by
the following transformations:

λi(t) = max �0, λi − �
C

j = 1

λi [δj(t)g�
ij ]� (4a)

and

µi(t) = max �0, µi − �
C

j = 1

µi [δj(t)g�
ij ]�, (4b)

where λi, µi are baseline speciation and extinction rates of clade i, and g�
ij, g

�
ij are the diversity

dependence parameters transforming speciation and extinction rates, respectively. The base-
line speciation and extinction rates (λi, µi) represent the rates at which clade i diversifies
when not affected by any diversity dependence effects. Since i ∈C, the within-clade diversity
dependence is quantified by gij, where i = j. It is emphasized that the reciprocal interactions
between two clades are modelled by two independent parameters (e.g. gij, gji), thus providing
the directionality of diversity dependence and allowing asymmetric effects.

Bayesian variable selection

The original implementation of the MCDD model used Bayesian variable selection (BVS)
to deal with the large number of parameters and tease apart noise from signal. Under the
BVS implementation of the model, the diversity dependence parameters are replaced by
auxiliary variables so that gij = kijIij, where k ∈R is the effect size representing the intensity of
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competition (k > 0) or positive interaction (k < 0). The indicator variable (Iij) can only take
values equal to 0 or 1, and determines the presence or absence of a diversity dependence
effect of intensity equal to kij. We treat the auxiliary variables as independent and estimate
them from the data (Kuo and Mallick, 1998; Silvestro et al., 2015a). We use uniform priors on the
effective sizes, P(k) ∼ U(−0.3, 0.3). Hence, the addition of one species in the diversity
trajectory of clade j can decrease or increase the speciation and extinction rates of clade i by
up to 30% of its baseline rates, based on equation (4) (Silvestro et al., 2015a). Since the indicators
can only take two values, we used a Bernoulli prior distribution on I:

P(Iij | ηi) = �ηi for Iij = 0

1 − ηi for Iij = 1
, (5)

where the probability ηi is an unknown hyperparameter with uniform prior probability
between 0 and 1, i.e. a flat beta distribution P(η) ∼ B(1, 1), and is estimated from the data.
The resulting prior on the diversity dependence parameters (g) under this BVS model
presents a spike at zero with mass equal to η while the remaining probability 1 − η is
uniformly distributed according to the prior on the effect size P(k). For the baseline speci-
ation and extinction rates, we use an exponential prior with rate parameter l, which is in
turn assigned a weak gamma hyper-prior P(l) ∼ Γ(1, 0.1) and estimated from the data.

The BVS method provides a direct way to estimate the probability of a positive (or
negative) diversity dependence effect, which is simply the frequency of positive (or negative)
diversity dependence parameter g in the posterior samples. For instance, the marginal
probability that clade i is under competition from clade j is given by

P(gij > 0) =
ΣM z+

ij

M
, (6)

where M is the number of posterior samples resulting from the MCMC and z+
ij = 1 when

gij > 0 and z+
ij = 0 when gij ≤ 0. A similar equation can be used to estimate the probability that

clade i experiences positive interaction from clade j, P(gij < 0). Such probabilities can be
calculated separately for speciation and extinction, by considering g�

ij and g�
ij, respectively.

A standard threshold to assess the significance of a diversity dependence effect is 0.5 (Gelman

et al., 2013), thus any diversity dependence parameter with a probability >0.5 of being greater
(or smaller) than 0 can be interpreted as signal, while probabilities <0.5 are interpreted as
noise.

MCMC implementation of the BVS method

The baseline speciation and extinction rates (λ, µ), indicators (I) and effect sizes (k) were
sampled via Markov chain Monte Carlo (MCMC) using standard random updates and
Metropolis-Hastings acceptance ratio (Metropolis et al., 1953; Hastings, 1970). To improve con-
vergence, proposals for k were bounded within the allowed range of [−0.3, 0.3] using
reflection at the boundaries (Ronquist et al., 2007). Values of η and l were drawn directly from
their respective conjugate posterior distributions:

ηi ∼ B�1 + 2C − �
C

j = 1

 Iij, 1 + �
C

j = 1

Iij�
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and

l ∼ Γ(3, 0.1 + λ + µ),

where B(a, b) is a beta distribution with shape parameters a and b, and Γ(a, b) is a gamma
distribution with shape parameter a and rate parameter b.

The MCDD model using BVS is implemented in the Python program ‘PyRateMCDD’,
available as part of the open source package PyRate (https:github.com/dsilvestro/PyRate).

Horseshoe prior

An alternative approach to the BVS method described above is provided by the ‘horseshoe
prior’ (HSP), originally described by Carvalho et al. (2010) to address problems with large
numbers of parameters and sparse signal. Under the HSP, the diversity dependence
parameters gij are assigned a normal prior distribution centred in 0 and with variance given
by two hyper-parameters εij and τ so that:

P(gij | εij, τ) ∼ N(0, ε2
ijτ

2), (7)

The hyper-parameters are estimated from the data and assigned half-Cauchy prior distri-
butions: εij ∼ C+(0, 1) and τ ∼ C+(0, 1) (Carvalho et al., 2010; Scott, 2011). The HSP distribution is
characterized by an infinitely tall spike at zero, yielding the shrinkage of noise parameters
(i.e. negligible diversity dependence effects), and by Cauchy-like heavy tails, allowing signals
(i.e. significant diversity dependence effects) of potentially strong positive or negative
intensity. The key aspect of the HSP is that it incorporates two shrinkage components:
the local shrinkage parameters ε = εi1, . . . , εiC, which shrink (or release) each individual
diversity dependence parameter g = gi1, . . . , giC and a global shrinkage parameter τ, which is
estimated from the average signal density (Carvalho et al., 2010). This parameterization has been
shown to accurately distinguish signal from noise and to yield posterior parameter estimates
that are remarkably similar to those obtained through gold standard Bayesian model
averaging methods (Carvalho et al., 2010). In our implementation, we assumed independent
local shrinkage parameters for each diversity dependence effect on speciation and extinction
(e.g. ε�

i1, . . . , ε�
iC for g�

i1, . . . , g�
iC and ε�

i1, . . . , ε�
iC for g�

i1, . . . , g�
iC), while we used a single global

shrinkage parameter τ for all diversity dependence effects and for both speciation and
extinction.

From the estimated values of local and global shrinkage, we can calculate for each
diversity dependence parameter gij the respective shrinkage coefficient κij = 1/(1 + τ2

ε
2
ij), where

κij ≈ 1 indicates that gij is shrunk near 0 (i.e. no diversity dependence effect), whereas κij ≈ 0
indicates that gij is basically unshrunk to either positive or negative values (Carvalho et al., 2010).
Unlike with the BVS implementation, the HSP does not allow a direct estimation of the
probability of a positive or negative diversity dependence effect. However, using the
estimated shrinkage coefficients we can calculate shrinkage weights, defined as wij = 1 − κij,
which provide an alternative way to assess the significance of the effect. Greater shrinkage
weights indicate signal (i.e. evidence for diversity dependence), while weights close to 0
indicate strong shrinkage applied to noise parameters, and a threshold of 0.5 can be used to
distinguish between noise and signal (Carvalho et al., 2010).

Despite some obvious differences in parameterization, both BVS and HSP are valid ways
to determine which and how many parameters contribute significantly to explaining the
data and to suppress those that only represent background noise in the model. The results
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obtained from the two methods are expected to be similar in several statistical contexts
(O’Hara and Sillanpää, 2009; Carvalho et al., 2010), but it is difficult to predict their performances
specifically within the MCDD analytical framework. Here, we took the approach of
analysing the same data sets under both algorithms to assess the respective degree of power
and accuracy under a range of scenarios (see ‘Simulations’ below).

MCMC implementation of the HSP method

We used standard random updates for baseline speciation and extinction rates (λ, µ) and for
the diversity dependence parameters (g) with Metropolis-Hastings MCMC to sample them
from their posterior distribution. To improve convergence and comparability with the BVS
implementation, proposals for g were bounded within a range of [−0.3, 0.3] using reflection
at the boundaries. In order to update the shrinkage parameters ε = εi1, . . . , εiC and τ, we used
a slice-sampling algorithm to draw new parameter values directly from their conditional
posterior distribution (Damien et al., 1999; Scott, 2010, 2011). After defining η = 1/τ2 and θ = θi1,
. . . , θiC, where θij = gij/εij, we used the two following steps to update the global shrinkage
parameter τ:

• sample u ∼ U(0, 1/(1 + η))
• sample

η� ∼ TΓ �2C + 1

2
, 

2

∑C
j = 1 θ

2
ij

, 
1 − uij

uij
� (8)

where TΓ(a, s, t) is a gamma distribution with shape parameter a and scale parameter s
truncated at t (i.e. with zero probability outside of the range [0, t ]), and 2C is the number of
local shrinkage parameters in a data set of C clades.

We then re-parameterized back to the τ-scale to obtain a posterior draw of the global
shrinkage parameter τ� = 	(1/η�). Similarly, for the local shrinkage parameters we define
ηij = 1/ε2

ij and µij = gij/τ and

• sample uij ∼ U(0, 1/(1 + ηij))
• sample η�ij ∼ TExp(2/µ2

ij , (1 – uij)/uij), where TExp(s, t) is an exponential distribution with
scale parameter s truncated at t.

As done previously, we then transform back to the ε-scale to obtain a posterior draw of
the local shrinkage parameter ε� = 	(1/η�ij) (Scott, 2010, 2011).

The HSP implementation of the MCDD model is available as ‘PyRateMCDD-HSP’ and
included in the open source package PyRate (https:github.com/dsilvestro/PyRate).

Simulations

We tested and compared the performance of the two implementations of the MCDD model
by analysing a range of simulated data sets. Assessing the accuracy and power of complex
macroevolutionary models using simulations is a necessary practice given that such models
may be prone to biases and inaccurate inferences (e.g. Davis et al., 2013; Rabosky and Goldberg, 2015).
Owing to the difficulty of simulating data sets under multiple diversity dependence effects,
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we simulated cases in which diversity dependence occurs within clades or between two
clades (e.g. gij ≠ 0). We focused on data sets with either no diversity dependence (g = 0) or
competitive effects (g > 0) and assessed whether the MCDD model can infer the correct
diversification scenario. We simulated data sets of 5, 10, and 20 clades under six scenarios
(detailed settings are given in Table 1).

I. All clades diversify under a constant birth–death process without diversity dependence
effects, thus diversification is time homogeneous and unbounded and clades do not
interfere with each other (the typical null hypothesis in phylogenetic studies).

II. All clades diversify under birth–death with random rate shifts through time (see below),
but without explicit diversity dependence effects. The diversification process is there-
fore non-homogeneous, but rate changes are purely stochastic. This scenario is
somewhat analogous to the null model used in several studies of biodiversity changes
in palaeobiology (Raup and Gould, 1974; Gould et al., 1977).

III. The clade of interest diversifies under self diversity-dependent speciation rate and
constant extinction rates, while other clades diversify under random birth–death
models with rate shifts as in scenario II. Within-clade diversity dependence has been
inferred for a number of clades (Phillimore and Price, 2008) and can be related to the expect-
ations of evolutionary radiations driven by the saturation of ecological opportunities
(Gavrilets and Losos, 2009).

Table 1. Summary of the simulation settings

Simulation Root ages
(Baseline)
speciation

(Baseline)
extinction

No. of
rate
shifts

Diversity
dependence
parameters

I r ∼ U(30, 15) λ ∼ U(0.01, 1) µ ∼ U(0.01, 1) s = 0

II r ∼ U(30, 15) λ ∼ U(0.01, 1) µ ∼ U(0.01, 1) s ∼ P(1)

III r ∼ U(30, 15) λi  ∼ U(0.75, 1), µi  ∼ U(0.05, 0.1), si = 0, g�
ii ∼ U(0.025, 0.05)

λ ∼ U(0.01, 1) µ ∼ U(0.01, 1) s ∼ P(1)

IV r ∼ U(30, 15) λ ∼ U(0.75, 1) µ ∼ U(0.05, 0.1) s = 0 g�
yy ∼ U(0.025, 0.05)

for y ∈1, . . . , C

V ri  ∼ U(30, 25), λi ∼ U(0.75, 1), µi ∼ U(0.05, 0.1), si = 0, g�
ii ∼ U(0.025, 0.05)

rj  ∼ U(30, 25), λj = [0.3, 0.1], µj = [0.01, 0.3], sj = 1, g�
ij ∼ U(0.1, 0.3)

r ∼ U(30, 15) λ ∼ U(0.01, 1) µ ∼ U(0.01, 1) s ∼ P(1)

VI ri  ∼ U(30, 20), λi ∼ U(0.5, 0.75), µi ∼ U(0.025, 0.05), si = 0, g�
ij ∼ U(0.025, 0.05)

rj  ∼ U(20, 15), λj = U(0.75, 1), µj = U(0.05, 0.1), sj = 0, g�
jj ∼ U(0.025, 0.05)

r ∼ U(30, 15) λ ∼ U(0.01, 1) µ ∼ U(0.01, 1) s ∼ P(1) g�
ij ∼ U(0.1, 0.3)

Note: Parameters without a subscript (e.g. r, λ) refer to values applied to all clades unless otherwise specified.
Random values for root ages and (baseline) speciation and extinction rates were drawn from uniform distributions
(U) and the number of random shifts in speciation and extinction were drawn from Poisson distributions (P) unless
otherwise specified. In simulation V, the birth–death rates were fixed with one shift in speciation rate at time 20 and
one shift in extinction rate at time 15. All diversity dependence parameters were equal to 0, unless otherwise
specified. Clades were conditioned on having between 20 and 250 (extinct and extant) lineages.
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IV. All clades diversify under diversity-dependent speciation rate and constant extinction rates.
We simulate here bounded diversification for all clades where the diversification of each
clade is only regulated by their own diversity. This scenario is consistent with the view that
diversity dependence acts primarily on speciation rates within a given lineage (Alroy, 1996).

V. The clade of interest i diversifies under self diversity dependence effects on speciation
rates and under competitive effects on extinction rates driven by a competing clade j,
while clade j independently rises and declines in diversity (more details below). Clades
i and j originate roughly at the same time, but clade j undergoes a rapid diversification
followed by a decline in diversity (independently of competition; see Table 1). Because
of the competitive effects of j, clade i diversifies at higher net rates only with the decline
of diversity in clade j. Thus, this simulation scenario represents a case of passive
replacement, with j being the incumbent clade and i profiting from its demise (Benton, 1996;

Van Valkenburgh, 1999).
VI. The clade of interest i diversifies under competitive effects on both speciation and

extinction from clade j, while clade j diversifies under self diversity-dependent speciation
rates and constant extinction rates. This scenario reproduces a ‘double-wedge’ pattern
linked with active displacement of clades (Benton, 1996; Sepkoski, 1996a; Van Valkenburgh, 1999),
whereby the diversification of the focal clade i is negatively affected by the origination
and diversification of a younger competing clade j.

These six scenarios thus encompass fundamental diversification dynamics studied in
palaeobiology and macroevolution. Moreover, they include elements (randomness, within
and between diversity dependence, effects on one versus all clades) that could confound the
detection of signals of clade interference, potentially affecting the power and accuracy of
the MCDD model. Therefore, this set of simulations allows testing of the accuracy of the
proposed method to detect interference between clades under a suite of plausible diversifi-
cation scenarios. Both scenarios I and II are null models, in which diversification occurs
under independent birth–death processes with no interactions within or between clades. The
rate variation introduced by random rate shifts in simulation II potentially generates
a signal that could be interpreted as diversity dependence, since the diversity trajectory of a
clade can randomly correlate with rate changes in another clade (Silvestro et al., 2015a). Both
scenarios III and IV represent cases of competitive effects within the clade of interest,
but, in simulation IV, similar diversity dependence occurs also within the other clades,
potentially allowing a better chance of detecting false diversity dependence effects among
clades. Scenarios V and VI introduce interactions (diversity dependence) between clades
where competitive effects occur between different lineages. The result of competition is
clade replacement in both cases, but in V competition is preventing diversification, whereas
in VI competition is causing diversity decline.

Data analysis

We simulated 100 data sets under each scenario and clade number (a total of 1800 data
sets), and analysed them using the BVS and the HSP implementations of the MCDD
model. We ran 5,000,000 MCMC iterations sampling every 5000 to approximate the
posterior distribution of the parameters, which we summarized by calculating the mean and
95% highest posterior density (95% HPD). We inspected MCMC convergence using Tracer
(Rambaut et al., 2014) and discarded the initial 1,000,000 iterations as burn-in.
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We then assessed the significance of all diversity dependence effects based on their
estimated probability under BVS (equation 6) and based on their shrinkage weights (w)
under HSP. We assessed the frequency of true and false positives as the probability that a
clade is correctly (or wrongly) identified as having a significant diversity dependence effect
on the clade of interest based on the standard threshold of 0.5 (Carvalho et al., 2010; Gelman et al.,

2013) and we explored the effect of higher thresholds. As an additional threshold rule, we
looked at the 95% HPD of the diversity dependence parameters (gλ, gµ) and considered the
effect as significant only when zero was outside of the 95% HPD interval. Finally, we also
estimated the probability that at least one clade, regardless of which one, is found to signifi-
cantly affect the diversification of the clade of interest. These probabilities in simulations
where none of the clades have diversity dependence effects (e.g. simulation I), represent the
false positive rate for the entire data set (of 5, 10, or 20 clades) and are therefore expected to
increase as the number of clades analysed increases.

RESULTS

We structure the description of the results from the simulations by first assessing the ability
of the algorithms to correctly detect diversity dependence effects under different thresholds
and evolutionary scenarios. Then, we describe the posterior estimates of the MCDD
parameters across simulations and compare them between the BVS and HSP algorithms.

Identification of diversity dependence effects

Our MCDD analyses show that diversity dependence can be correctly identified in most
of the simulated scenarios (Tables S1–S3; www.evolutionary-ecology.com/data/
3010Appendix.pdf). Under constant rate birth–death models (scenario I), the frequency of
false positives using a threshold of 0.5 was between 0.08 and 0.17 under BVS and between
0 and 0.07 under the HSP (Fig. 1A). The false positive rates were consistently smaller
under the HSP than under the BVS implementation. The number of clades included in
the analysis did not influence strongly these results, although there is a slight trend
towards fewer false positives for extinction rates with increasing number of clades. When
using a more conservative threshold for significance (0.6), the frequencies of false positives
drop to 0.05–0.10 for BVS analyses and below 0.02 for HSP analyses (Fig. 1B). The
frequency of false positives falls to 0–0.01 when applying the 95% HPD rule to assess
significance (Fig. 1C). Under the BVS implementation, the probability of finding at least
one false positive among the analysed clades increases, as expected, with the number of
clades included in the data set, from 0.49 in data sets of 5 clades to 0.89 in data sets of
20 clades (0.33 and 0.66 respectively using a threshold of 0.6). Consistent with the lower
false positive rates reported above, the probability of finding at least one false positive
among the analysed clades was much lower under the HSP implementation (Tables S1–S3).
Unexpectedly, false positive rates under HSP decrease (though only slightly) with increasing
number of clades, from 0.19 in data sets of 5 clades to 0.13 in data sets of 20 clades. These
values further reduce to 0.045 and 0.035 when using a threshold of 0.6.

As expected based on previous simulations (Silvestro et al., 2015a), the introduction of random
rate variation (scenario II) increases the chances of inferring significant diversity dependence
effects, even if none was used to simulate the data. Under random variable birth–death
and a threshold of 0.5, the frequency of false positives inferred by BVS ranged between
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0.09 and 0.21, with no significant variation linked with the number of clades analysed
(Tables S1–S3). The frequencies decreased to 0.07–0.14 under a 0.6 threshold. In contrast,
HSP analyses yielded false positive frequencies around 0.15–0.18 in data sets of 5 clades,
but false positives decreased to 0.10–0.15 with 10 clades, and to 0.06–0.07 with 20 clades.
False positives further decreased from 0.07–0.08 (5 clades) to 0.02–0.03 (20 clades) under a
0.6 threshold. Under the 95% HPD rule, false positives ranged between 0 and 0.03 across
simulation II.

The analysis of data sets simulated under a model of diversity dependence within the
clade (scenarios III and IV) of interest suggests that the model succeeds in identifying
diversity dependence. Under BVS, the frequencies of false positives (i.e. the frequency
of spurious diversity dependence effects beyond the simulated ones) were generally below
0.09, but reached 0.22 for speciation in the case of 5 clades, all undergoing self diversity
dependence speciation (scenario IV). In contrast, the frequencies of false positives under
the HSP were always very low and ranged between 0 and 0.03 across simulations III and IV
(Tables S1–S3). Both implementations showed high power to correctly identify diversity
dependence within the clade of interest. The rates of true positives were slightly higher
under BVS (0.91–1) than under HSP (0.85–0.99). The 95% HPD rule yielded low false
positive rates for both BVS and HSP (0–0.04) while maintaining reasonably high power
(true positive rates of 0.71–0.97).

Fig. 1. Frequencies of false positives across simulations (scenario I) under the standard 0.5 threshold
and a more conservative threshold of 0.6.
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In simulations with both speciation and extinction undergoing clade competition
(scenarios V and VI), the average power to correctly identify diversity dependence under
BVS is 0.77 in data sets of 5 clades, decreasing to 0.52 in data sets of 20 clades (Tables
S1–S3; Fig. 2). Similarly, the HSP implementation yielded frequencies of true positives
ranging from 0.79 (5 clades) to 0.48 (20 clades). Diversity dependence was usually found
with more confidence for speciation rates than for extinction (Fig. 2). In simulations of
scenario V, the false positive rates are similar to those observed for scenarios I–IV (Fig. 2),
but they were substantially higher under scenario VI, reaching 0.13 under BVS and 0.23
under HSP in data sets of 5 clades. False positive rates, however, decreased to 0.10 (BVS)
and 0.06 (HSP) in data sets of 20 clades (Tables S1–S3). When using the 95% HPD rule,
false positive rates were small for both scenarios V and VI, but at the cost of a lower power,
especially for extinction diversity dependence (Fig. 2C; Tables S1–S3).

Posterior parameter estimates

The posterior estimates of the diversity dependence parameters (g�, g�) are found to be
centred around 0 in cases in which they were indeed set to 0 (i.e. no diversity dependence)
when generating the data (Fig. 3E, F; Figs. S1–S18, 3010Appendix). The posterior estimates

Fig. 2. Frequencies of true and false positives across simulations (scenario V) under the standard 0.5
threshold and a more conservative threshold of 0.6.
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Fig. 3. Posterior estimates of the diversity dependence parameters (g�, g�) shown as mean
(histograms) and 95% HPDs (shaded areas) across 100 simulations generated under scenario V with
10 clades.
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of these parameters represent the ‘noise’ in the data sets and obtained similar levels of
accuracy across all simulations. Estimates are much more strongly concentrated around 0
under the HSP than under the BVS implementation, suggesting that the horseshoe prior
applies a stronger shrinkage over the noise parameter (e.g. Fig. 3E, F, Fig. S5). This pattern
is also reflected in the size and distribution of the respective HPDs, which are narrow
around 0 in HSP analyses, whereas in BSV runs the HPDs are much wider and tend to span
the entire prior range [−0.3, 0.3]. Under HSP, we found a consistent decrease in false
positive rates with increasing number of clades analysed (Fig. 1), which appears to be linked
to decreasing values of the global shrinkage parameter τ (Fig. 4). The global shrinkage
parameter reflects the amount of background noise in the data, which likely increases with
increasing number of clades analysed. This leads to smaller values of τ, which, in turn, yield
a stronger shrinkage of the diversity dependence parameters and, εi1, . . . , εiC being equal,
lower shrinkage weights (wi1, . . . , wiC,).

The simulated competition effects acting on speciation and extinction rates (g� > 0,
g� > 0) were accurately detected in most simulations under both BVS and HSP analyses
(Fig. 3A–D; Figs. S7–S18). Large effects, however, tended to be shrunk towards smaller
values under HSP (Fig. 3D) and the shrinkage was stronger with increasing number
of clades (e.g. Figs. S13–S14), likely a consequence of smaller estimated values of the
global shrinkage parameter τ (Fig. 4). As observed for noise parameters, the HPDs of
positive diversity dependence effects were substantially narrower in HSP estimates
compared with BVS estimates, suggesting higher precision in the posterior distribution
(Fig. 3A–D).

Fig. 4. Posterior estimates of the global shrinkage parameter (τ) posterior mean and 95% HPD
averaged over 100 replicates of simulation settings I and II (A). The global shrinkage decreases with
increasing number of clades analysed and is associated with a decline in the frequency of false
positives (here averaged over speciation and extinction using a 0.5 threshold; B).
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DISCUSSION

Inferring diversity dependence from the fossil record is challenging, especially at the species
level, because it requires a very good fossil record (Marshall and Quental, 2016). Although there are
some analyses of diversity dependence within a given clade (Alroy, 1996, 2008; Ezard et al., 2011; Liow

and Finarelli, 2014), the task is even harder when considering interference between separate
lineages (but see Silvestro et al., 2015a). The central assumption that guided most research on
diversity dependence is that species within the same lineage are more likely to affect each
other (Marshall and Quental, 2016), as they should have similar requirements and use similar
resources (Darwin, 1859). Nevertheless, niche overlap among distantly related taxa, and thus the
effects they exert upon each other, might be as large as that between species that show close
phylogenetic relatedness (Schluter, 1986; Diamond, 1987; Englund et al., 1992). In fact, several previous
studies suggest that competitive interactions among lineages may occur in a wide range of
organisms [e.g. in plants (Knoll, 1986; Schneider et al., 2004), invertebrates (Lidgard et al., 1993; Sepkoski et al.,

2000; Liow et al., 2015), and vertebrates (Van Valen and Sloan, 1966; Rosenzweig and McCord, 1991; Van Valkenburgh,

1999; Silvestro et al., 2015a)], although it is usually assumed that competition will preferentially
play a role through incumbency effects rather than through active displacement (Rosenzweig and

McCord, 1991; Benton, 1996; Jablonski, 2008).
Here we present a method that allows quantification of the effects of diversity dependence

within and between lineages in a rigorous way. We have shown that clade competition can be
inferred with confidence in a wide range of scenarios using the MCDD model. The two
implementations of the MCDD model provide comparable results, but also display some
clear differences, linked with the way parameters are shrunk around 0 when identified as
noise. Both BVS and HSP are able, though with variable power and accuracy, to tease apart
signal from noise through a joint estimation of all parameters. This is a clear advantage
over traditional model testing approaches in that the extremely large numbers of possible
diversity dependence scenarios are tested in a single run, while noise shrinkage prevents
over-parameterization.

Under our BVS algorithm, there is total shrinkage of parameters when identified as noise
(i.e. gij = 0 when the respective indicator equals 0) and no shrinkage (uniform prior) when
they are identified as signal. This leads to posterior distributions that are usually difficult
to summarize due to a spike at exactly 0. The HSP implementation provides instead a
continuous transition in the shrinkage applied to noise and signal, whereby all parameters
are shrunk through a single global parameter and through local parameters. Owing to the
infinite spike at zero and the heavy tails of the horseshoe distribution, noise parameters are
shrunk near 0 much more strongly than signal parameters (Carvalho et al., 2010). The difference
in these two parameterizations result in much wider credible intervals under BVS, where
parameters have essentially no prior constraints (besides the minimum and maximum
boundaries) whenever the respective indicators equal 1. In contrast, credible intervals are
much narrower under HSP (Fig. 3B, F). However, the stronger overall shrinkage applied by
the HSP can result in an underestimation of the absolute value of the diversity dependence
parameter when its true value is large (Fig. 3D).

Although the probabilities of clade diversity dependence estimated by BVS are not
equivalent to the shrinkage weights inferred from HSP analyses, both metrics can be used to
assess the significance of the estimated positive or negative effects. This similarity has been
previously shown in different implementations (Carvalho et al., 2010) and is also observed in our
MCDD analyses. The use of more conservative thresholds for significance (i.e. 0.6 instead
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of the standard 0.5) clearly reduces the risk of wrongly identifying diversity dependence
effects, though at the cost of decreasing the power of the inference. We highlight, however,
that the posterior mean values of the g�, g� parameters obtained from MCDD analyses
are effectively the result of model averaging (Carvalho et al., 2010; Gelman et al., 2013), and thus can
be interpreted beyond the binary and biologically simplistic choice between ‘significant’
and ‘non-significant’ effects. This is particularly evident when we consider the diversity
dependence effects estimated under HSP. Despite the presence of some false positives
(depending on the threshold rule applied), the posterior values of noise parameters are
consistently narrowly centred around 0, indicating that no biologically meaningful effect is
detected (e.g. Fig. 3F, Figs. S1–S6). Thus, we argue that robust evolutionary interpretation
of the MCDD model can be simply derived from the posterior mean of the HSP estimates,
without strictly relying on a threshold rule. Indeed, while shrinkage weights (and
probabilities obtained from BVS) provide valuable measures of the statistical support for
diversity dependence hypotheses, their values are also directly reflected in the a posteriori
values of g�, g�, which therefore summarize both the probability and the intensity of
diversity dependence.

Because the detection of diversity dependence relies on correlations between the birth–
death dynamics and diversity trajectories, the ability of the MCDD model to identify
competitive or positive interactions between clades depends on the amount of temporal
overlap between lineages. Thus, when the amount of temporal overlap between clades is
small, the power of the analysis decreases. This is the case of simulation VI, where the clade
of interest diversifies under no constraints for the first part of its existence and only c. 7.5
Myr later starts to feel the negative effects of a younger competing clade (Table 1). The
increased difficulty of identifying diversity dependence effects under this scenario is
reflected by a lower power of the analysis and a higher uncertainty around which clade is
responsible for rate changes observed in the clade of interest (Tables S1–S3). A similarly
high degree of uncertainty around which clade is actively displacing an older clade has been
observed in previous empirical analyses of active displacement (Silvestro et al., 2015a).

Previous analyses of the fossil record indicate both active displacement and passive
replacement between distantly related lineages may have occurred several times (Rosenzweig and

McCord, 1991; Sepkoski, 1996b; Van Valkenburgh, 1999; Sepkoski et al., 2000; Silvestro et al., 2015a). The MCDD
model enables both phenomena to be identified from fossil data and may help us unravel
whether the effects of ecological interactions can indeed scale up, driving diversification
dynamics at geological times scales. Although the general sense has been that active
displacement was a rather rare phenomenon (Benton, 1996), we suggest that the development
of our method might allow further scrutinization of this perception. We should note, how-
ever, that in the most extreme case of incumbency, where the radiation of the later clade is
only possible after a complete removal of the incumbent clade, the temporal overlap
between clades might be small and the method proposed here is unlikely to detect diversity
dependence signals.

The current implementation of MCDD is based on variable rate birth–death models
and represents a process-based approach to detect positive or negative interactions
within and between clades (where birth and death are the processes generating diversity
patterns), as compared with other pattern-based methods that look at simpler correlations
between diversity trajectories (Benton, 1996; Sepkoski, 1996b). The possibility to explicitly test
diversity dependence hypotheses in a statistically rigorous way may help to understand
the relevance of diversity dependence in more general terms. The approaches that we have
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developed in this study contribute to fuelling the debate on the existence and strength of
limits to species diversification. More generally, it provides a new direction in current
attempts to test models in comparative methods (e.g. Maddison and FitzJohn, 2015; Rabosky and Goldberg,

2015) and could be more widely used to assess the power and accuracy of these methods to
infer the mechanisms driving macroevolutionary patterns. The inclusion of additional
information concerning species ecology, behaviour, phenotypic traits, and geographic
distribution can potentially increase the power of fossil-based analyses and improve our
understanding of the mechanisms driving diversification dynamics and their responses to
biotic interactions.
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