57 research outputs found

    PET/MRI in Breast Cancer

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147750/1/jmri26298_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147750/2/jmri26298.pd

    “In small places, close to home”: urban environmental impacts on child rights across four global cities

    Get PDF
    Urban environments influence child behaviours, exposures and experiences and may affect health, development, achievement and realization of fundamental human rights. We examined the status of eleven UN Convention on the Rights of the Child articles, in a multi-case study across four global cities. Within all study cities, children experienced unequal exposure to urban environmental risks and amenities. Many violations of child rights are related to car-based transportation systems and further challenged by pressures on urban systems from rapid population increases in the context of climate change. A child rights framework provides principles for a collective, multi-sectoral re-imagination of urban environments that support the human rights of all citizens

    Rationally designed dendritic silica nanoparticles for oral delivery of exenatide

    Get PDF
    Type 2 diabetes makes up approximately 85% of all diabetic cases and it is linked to approximately one-third of all hospitalisations. Newer therapies with long-acting biologics such as glucagon-like peptide-1 (GLP-1) analogues have been promising in managing the disease, but they cannot reverse the pathology of the disease. Additionally, their parenteral administration is often associated with high healthcare costs, risk of infections, and poor patient adherence associated with phobia of needles. Oral delivery of these compounds would significantly improve patient compliance; however, poor enzymatic stability and low permeability across the gastrointestinal tract makes this task challenging. In the present work, large pore dendritic silica nanoparticles (DSNPs) with a pore size of ~10 nm were prepared, functionalized, and optimized in order to achieve high peptide loading and improve intestinal permeation of exenatide, a GLP-1 analogue. Compared to the loading capacity of the most popular, Mobil Composition of Matter No. 41 (MCM-41) with small pores, DSNPs showed significantly high loading owing to their large and dendritic pore structure. Among the tested DSNPs, pristine and phosphonate-modified DSNPs (PDSNPs) displayed remarkable loading of 40 and 35% w/w, respectively. Furthermore, particles successfully coated with positively charged chitosan reduced the burst release of exenatide at both pH 1.2 and 6.8. Compared with free exenatide, both chitosan-coated and uncoated PDSNPs enhanced exenatide transport through the Caco-2 monolayer by 1.7 fold. Interestingly, when a triple co-culture model of intestinal permeation was used, chitosan-coated PDSNPs performed better compared to both PDSNPs and free exenatide, which corroborated our hypothesis behind using chitosan to interact with mucus and improve permeation. These results indicate the emerging role of large pore silica nanoparticles as promising platforms for oral delivery of biologics such as exenatide.We thank the National Health and Medical Research Council’s Project Grant GNT1107836 and Early Career Fellowship and Career Development Fellowship to A.P. We also thank NHMRC for EC Fellowship to T.K. We would also like to thank the Centre of Microscopy and Microanalysis at The University of Queensland for providing facilities to conduct TEM. This article was, in part, a result of the project NORTE-01-0145-FEDER-000012, supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds—through the COMPETE 2020–Operational Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274)

    National-Scale Rainfall-Triggered Landslide Susceptibility and Exposure in Nepal

    Get PDF
    Nepal is one of the most landslide-prone countries in the world, with year-on-year impacts resulting in loss of life and imposing a chronic impediment to sustainable livelihoods. Living with landslides is a daily reality for an increasing number of people, so establishing the nature of landslide hazard and risk is essential. Here we develop a model of landslide susceptibility for Nepal and use this to generate a nationwide geographical profile of exposure to rainfall-triggered landslides. We model landslide susceptibility using a fuzzy overlay approach based on freely-available topographic data, trained on an inventory of mapped landslides, and combine this with high resolution population and building data to describe the spatial distribution of exposure to landslides. We find that whilst landslide susceptibility is highest in the High Himalaya, exposure is highest within the Middle Hills, but this is highly spatially variable and skewed to on average relatively low values. Around 4 × 106 Nepalis (∼15\% of the population) live in areas considered to be at moderate or higher degree of exposure to landsliding (>0.25 of the maximum), and critically this number is highly sensitive to even small variations in landslide susceptibility. Our results show a complex relationship between landslides and buildings, that implies wider complexity in the association between physical exposure to landslides and poverty. This analysis for the first time brings into focus the geography of the landslide exposure and risk case load in Nepal, and demonstrates limitations of assessing future risk based on limited records of previous events

    Intra-swash hydrodynamics and sediment flux for dambreak swash on coarse-grained beaches

    Get PDF
    The paper reports on dambreak-type swash experiments in which intra-swash hydrodynamics and sediment flux are measured for swash on a coarse sand beach and a gravel beach. Flow velocity and depth are measured using PIV and LIF respectively; the intra-swash sediment flux is measured using sediment traps. Comparison of measured hydrodynamics with the immobile, permeable bed experiments of Kikkert et al. (2013) indicates that bed mobility impacts on the swash hydrodynamics, reducing the maximum run-up by approximately 8% for both beaches, compared to the maximum run-up on the corresponding immobile beach. The measured intra swash sediment flux at a given location is characterised by high flux at the moment of bore arrival, followed by rapid decay during uprush, becoming zero at some time before flow reversal. For the gravel beach, the backwash sediment flux is negligibly small, while for the sand beach the backwash flux increases slowly as the flow accelerates down the beach, and peaks at about the time of maximum backwash velocity. Intra-swash sediment flux calculated using the Meyer-Peter and Müller bed load transport formula, with measured hydrodynamics as input and bed shear stress estimated using both the Swart and Colebrook formulae, is within a factor 2 of the measured intra-swash flux. The agreement between the calculated and measured flux is better for the sand beach than for the gravel beach, and better for uprush than for backwash. For the sand beach there is good agreement between calculated and measured total uprush and total backwash sediment volumes. The agreement is less good for the gravel beach, for which calculated and measured uprush volumes show a similar trend but the calculated backwash volumes over-estimate the (negligible) volumes observed in the experiments

    Incorporation of lipid nanosystems containing omega‑3 fatty acids and resveratrol in textile substrates for wound healing and anti‑inflammatory applications

    Get PDF
    In the present work, lipid nanosystems containing omega-3 fatty acid (nanostructured lipid carriers, NLCs) or omega-3 fatty acid and resveratrol (liposomes) were developed to improve cotton textile substrates as dressings with anti-inflammatory properties for wound healing applications. Lipid nanosystems were incorporated into woven, non-woven and knitted cotton substrates by exhaustion and impregnation. Based on physical–chemical characterization of the textile substrates, the textile structure and type of lipid nanosystems dictated the adsorption efficiency. In the case of NLCs, the woven substrate functionalized by exhaustion had a higher omega-3 release being the most promising for wound dressing application. Whereas for liposomes, the most adequate textile was the cationized knitted fabric functionalized by impregnation, that showed a more prolonged release profile of resveratrol.This work is financed by Project UID/CTM/00264/2019 of 2C2T - Centro de Ciencia e Tecnologia Textil, funded by National Founds through FCT/MCTES. The authors also acknowledge the Portuguese Foundation for Science and Technology (FCT) for financial support in the framework of the Strategic Funding UID/Multi/04546/2013 and UID/FIS/04650/2019 in the ambit of the project POCI-01-0145-FEDER-032651, co-financed by the European Regional Development Fund (ERDF), through COMPETE 2020, under Portugal 2020

    Prospective multicenter assessment of patient preferences for properties of gadolinium-based contrast media and their potential socioeconomic impact in a screening breast MRI setting

    Get PDF
    Objective: It is unknown how patients prioritize gadolinium-based contrast media (GBCM) benefits (detection sensitivity) and risks (reactions, gadolinium retention, cost). The purpose of this study is to measure preferences for properties of GBCM in women at intermediate or high risk of breast cancer undergoing annual screening MRI. Methods: An institutional reviewed board-approved prospective discrete choice conjoint survey was administered to patients at intermediate or high risk for breast cancer undergoing screening MRI at 4 institutions (July 2018-March 2020). Participants were given 15 tasks and asked to choose which of two hypothetical GBCM they would prefer. GBCMs varied by the following attributes: sensitivity for cancer detection (80-95%), intracranial gadolinium retention (1-100 molecules per 100 million administered), severe allergic-like reaction rate (1-19 per 100,000 administrations), mild allergic-like reaction rate (10-1000 per 100,000 administrations), out-of-pocket cost (2525-100). Attribute levels were based on published values of existing GBCMs. Hierarchical Bayesian analysis was used to derive attribute "importance." Preference shares were determined by simulation. Results: Response (87% [247/284]) and completion (96% [236/247]) rates were excellent. Sensitivity (importance = 44.3%, 95% confidence interval = 42.0-46.7%) was valued more than GBCM-related risks (mild allergic-like reaction risk (19.5%, 17.9-21.1%), severe allergic-like reaction risk (17.0%, 15.8-18.1%), intracranial gadolinium retention (11.6%, 10.5-12.7%), out-of-pocket expense (7.5%, 6.8-8.3%)). Lower income participants placed more importance on cost and less on sensitivity (p < 0.01). A simulator is provided that models GBCM preference shares by GBCM attributes and competition. Conclusions: Patients at intermediate or high risk for breast cancer undergoing MRI screening prioritize cancer detection over GBCM-related risks, and prioritize reaction risks over gadolinium retention. Key points: • Among women undergoing annual breast MRI screening, cancer detection sensitivity (attribute "importance," 44.3%) was valued more than GBCM-related risks (mild allergic reaction risk 19.5%, severe allergic reaction risk 17.0%, intracranial gadolinium retention 11.6%, out-of-pocket expense 7.5%). • Prospective four-center patient preference data have been incorporated into a GBCM choice simulator that allows users to input GBCM properties and calculate patient preference shares for competitor GBCMs. • Lower-income women placed more importance on out-of-pocket cost and less importance on cancer detection (p < 0.01) when prioritizing GBCM properties

    Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer

    Get PDF
    PURPOSE: The known epithelial ovarian cancer (EOC) susceptibility genes account for less than 50% of the heritable risk of ovarian cancer suggesting that other susceptibility genes exist. The aim of this study was to evaluate the contribution to ovarian cancer susceptibility of rare deleterious germline variants in a set of candidate genes. METHODS: We sequenced the coding region of 54 candidate genes in 6385 invasive EOC cases and 6115 controls of broad European ancestry. Genes with an increased frequency of putative deleterious variants in cases versus controls were further examined in an independent set of 14 135 EOC cases and 28 655 controls from the Ovarian Cancer Association Consortium and the UK Biobank. For each gene, we estimated the EOC risks and evaluated associations between germline variant status and clinical characteristics. RESULTS: The ORs associated for high-grade serous ovarian cancer were 3.01 for PALB2 (95% CI 1.59 to 5.68; p=0.00068), 1.99 for POLK (95% CI 1.15 to 3.43; p=0.014) and 4.07 for SLX4 (95% CI 1.34 to 12.4; p=0.013). Deleterious mutations in FBXO10 were associated with a reduced risk of disease (OR 0.27, 95% CI 0.07 to 1.00, p=0.049). However, based on the Bayes false discovery probability, only the association for PALB2 in high-grade serous ovarian cancer is likely to represent a true positive. CONCLUSIONS: We have found strong evidence that carriers of PALB2 deleterious mutations are at increased risk of high-grade serous ovarian cancer. Whether the magnitude of risk is sufficiently high to warrant the inclusion of PALB2 in cancer gene panels for ovarian cancer risk testing is unclear; much larger sample sizes will be needed to provide sufficiently precise estimates for clinical counselling
    corecore