336 research outputs found

    In situ longitudinal pre-stretch in the human femoropopliteal artery

    Get PDF
    In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n = 148 fresh human FPAs (14–80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff–Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then analyzed in the context of demographics, risk factors and structural characteristics. Age had the strongest negative effect (r = −0.812, p \u3c 0.01) on LPS and could alone explain 66% of LPS variability. Male gender, higher body mass index, hypertension, diabetes, coronary artery disease, dyslipidemia and tobacco use had negative effects on LPS, but only the effect of tobacco was not associated with aging. FPAs with less pre-stretch had thicker medial layers, but thinner intramural elastic fibers with less dense and more fragmented external elastic laminae. Elastin degradation was associated with decreased physiological tethering force and longitudinal stress, while circumferential stress remained constant. FPA wall pathology was negatively associated with LPS (r = −0.553, p \u3c 0.01), but the effect was due primarily to aging. LPS in the FPA may serve as an energy reserve for adaptive remodeling. Reduction of LPS due to degradation and fragmentation of intramural longitudinal elastin during aging can be accelerated in tobacco users

    In situ longitudinal pre-stretch in the human femoropopliteal artery

    Get PDF
    In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n = 148 fresh human FPAs (14–80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff–Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then analyzed in the context of demographics, risk factors and structural characteristics. Age had the strongest negative effect (r = −0.812, p \u3c 0.01) on LPS and could alone explain 66% of LPS variability. Male gender, higher body mass index, hypertension, diabetes, coronary artery disease, dyslipidemia and tobacco use had negative effects on LPS, but only the effect of tobacco was not associated with aging. FPAs with less pre-stretch had thicker medial layers, but thinner intramural elastic fibers with less dense and more fragmented external elastic laminae. Elastin degradation was associated with decreased physiological tethering force and longitudinal stress, while circumferential stress remained constant. FPA wall pathology was negatively associated with LPS (r = −0.553, p \u3c 0.01), but the effect was due primarily to aging. LPS in the FPA may serve as an energy reserve for adaptive remodeling. Reduction of LPS due to degradation and fragmentation of intramural longitudinal elastin during aging can be accelerated in tobacco users

    Fluvial organic carbon composition regulated by seasonal variability in lowland river migration and water discharge

    Get PDF
    Identifying drivers of seasonal variations in fluvial particulate organic carbon (POC) composition can aid sediment provenance and biogeochemical cycling studies. We evaluate seasonal changes in POC composition in the Río Bermejo, Argentina, a lowland river running ∼1,270 km without tributaries. Weekly POC concentration and isotopic composition from 2016 to 2018 show that during the wet season, increased lateral channel migration generates an influx of 13C-enriched and 14C-enriched floodplain-sourced material, overprinting the 13C-depleted and 14C-depleted headwater signature that is observed during the dry season. These findings demonstrate how channel morphodynamics can drive variability of POC composition in lowland rivers, and may modulate the composition of POC preserved in sedimentary archives

    Hypoxia significantly reduces aminolaevulinic acid-induced protoporphyrin IX synthesis in EMT6 cells

    Get PDF
    We have studied the effects of hypoxia on aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) synthesis in EMT6 monolayer cultures characterized by different cell densities and proliferation rates. Specifically, after ALA incubation under hypoxic or normoxic conditions, we detected spectrofluorometrically the PpIX content of the following populations: (a) low-density exponentially growing cells; (b) high-density fed-plateau cells; and (c) high-density unfed-plateau cells. These populations were selected either for the purpose of comparison with other in vitro studies (low-density exponentially growing cells) or as representatives of tumour regions adjacent to (high-density fed-plateau cells) and further away from (high-density unfed-plateau cells) capillaries. The amount of PpIX per cell produced by each one of these populations was higher after normoxic ALA incubation. The magnitude of the effect of hypoxia on PpIX synthesis was dependent on cell density and proliferation rate. A 42-fold decrease in PpIX fluorescence was observed for the high-density unfed-plateau cells. PpIX production by the low-density exponential cells was affected the least by ALA incubation under hypoxic conditions (1.4-fold decrease), whereas the effect on the high-density fed-plateau population was intermediate (20-fold decrease). © 1999 Cancer Research Campaig

    H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021–April 2022

    Get PDF
    Highly pathogenic avian influenza viruses (HPAIVs) of the A/goose/Guangdong/1/1996 lineage H5 clade 2.3.4.4b continue to have a devastating effect on domestic and wild birds. Full genome sequence analyses using 1369 H5N1 HPAIVs detected in the United States (U.S.) in wild birds, commercial poultry, and backyard flocks from December 2021 to April 2022, showed three phylogenetically distinct H5N1 virus introductions in the U.S. by wild birds. Unreassorted Eurasian genotypes A1 and A2 entered the Northeast Atlantic states, whereas a genetically distinct A3 genotype was detected in Alaska. The A1 genotype spread westward via wild bird migration and reassorted with North American wild bird avian influenza viruses. Reassortments of up to five internal genes generated a total of 21 distinct clusters; of these, six genotypes represented 92% of the HPAIVs examined. By phylodynamic analyses, most detections in domestic birds were shown to be point-source transmissions from wild birds, with limited farm-to-farm spread

    Rapid evolution of A(H5N1) influenza viruses after intercontinental spread to North America

    Get PDF
    Highly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.4b underwent an explosive geographic expansion in 2021 among wild birds and domestic poultry across Asia, Europe, and Africa. By the end of 2021, 2.3.4.4b viruses were detected in North America, signifying further intercontinental spread. Here we show that the western movement of clade 2.3.4.4b was quickly followed by reassortment with viruses circulating in wild birds in North America, resulting in the acquisition of different combinations of ribonucleoprotein genes. These reassortant A(H5N1) viruses are genotypically and phenotypically diverse, with many causing severe disease with dramatic neurologic involvement in mammals. The proclivity of the current A(H5N1) 2.3.4.4b virus lineage to reassort and target the central nervous system warrants concerted planning to combat the spread and evolution of the virus within the continent and to mitigate the impact of a potential influenza pandemic that could originate from similar A(H5N1) reassortants

    Return of the Great Spaghetti Monster : Learnings from a Twelve-Year Adventure in Web Software Development

    Get PDF
    The widespread adoption of the World Wide Web has fundamentally changed the landscape of software development. Only ten years ago, very few developers would write software for the Web, let alone consider using JavaScript or other web technologies for writing any serious software applications. In this paper, we reflect upon a twelve-year adventure in web development that began with the development of the Lively Kernel system at Sun Microsystems Labs in 2006. Back then, we also published some papers that identified important challenges in web-based software development based on established software engineering principles. We will revisit our earlier findings and compare the state of the art in web development today to our earlier learnings, followed by some reflections and suggestions for the road forward.Peer reviewe

    Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway

    Get PDF
    During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud)
    • …
    corecore