
Return of the Great Spaghetti Monster

Learnings from a Twelve-Year Adventure
in Web Software Development

Antero Taivalsaari1 and Tommi Mikkonen2

1Nokia Technologies, Tampere, Finland
2University of Helsinki, Helsinki, Finland

antero.taivalsaari@nokia.com, tommi.mikkonen@helsinki.fi

Abstract. The widespread adoption of the World Wide Web has funda-
mentally changed the landscape of software development. Only ten years
ago, very few developers would write software for the Web, let alone
consider using JavaScript or other web technologies for writing any se-
rious software applications. In this paper, we reflect upon a twelve-year
adventure in web development that began with the development of the
Lively Kernel system at Sun Microsystems Labs in 2006. Back then, we
also published some papers that identified important challenges in web-
based software development based on established software engineering
principles. We will revisit our earlier findings and compare the state of
the art in web development today to our earlier learnings, followed by
some reflections and suggestions for the road forward.

Keywords: Web Programming, Web Applications, Web Engineering,
Software Engineering, HTML5, JavaScript, the Internet of Things, IoT,
Programmable World

1 Introduction

The widespread adoption of the World Wide Web has fundamentally changed
the landscape of software development. In the past years, the Web has become
the de facto deployment environment for new software systems and applications.
Office productivity applications and corporate tools such as invoicing, purchasing
and expense reporting systems have migrated to the Web. Banking, insurance
and retail industries – to name a few – have been transformed profoundly by
the emergence of web-based applications and internet services. Academic papers
such as this one are now commonly written using collaborative, browser-based
environments instead of traditional, installed office suites. Even software devel-
opment is nowadays often performed using interactive, web-based tools.

Over ten years ago, we published a number of papers on the emergence of
the Web as a software development platform and associated challenges [1, 2]. At
that point, the world looked very different still. Back in 2006, very few developers
would write software for the Web, let alone consider using JavaScript or other
web technologies for writing any serious software applications [3]. Today, the

Software as a Service (SaaS) model [4] is prevalent, and interactive, dynamic
software development for the Web has become commonplace. In fact, traditional
installed applications now maintain a stronghold only in the mobile realm, where
the number of mobile apps (especially for iOS and Android devices) has exploded
in recent years [5]. In contrast, the number of applications that people install
on their personal computers has been in steady decline over the past years. The
majority of activities on personal computers are now performed using a web
browser, leveraging the Software as a Service model [6].

A key technical manifestation of the early years of our twelve-year adventure
in web development was the Lively Kernel system (http://lively-kernel.
org/), originally created at Sun Microsystems Labs in 2006-2008. The Lively
Kernel was one of the first fully interactive, self-sustaining, web-based software
development environment that was built on the assumption that the web browser
would become a credible, full-fledged software platform [7]. While the Lively
Kernel is not very widely known or used today, it did pave the way – for its part –
for today’s Software as a Service based software development systems and truly
interactive, live web programming. A recently published ten-year anniversary
paper summarizes the roots, design thinking and the evolution of the Lively
Kernel from the technical perspective over the past ten years [8].

The broader software development challenges that we faced in the early years
were summarized in another paper that was provocatively called ”Spaghetti
Code for the 21st Century” [1, 9]. In that paper, we argued that web development
had reintroduced many of the spaghetti code problems that had already largely
been eliminated in the software industry some ten years earlier. We listed issues
that plagued web application development at the time, reminiscing us of the
fabled ”spaghetti code wars” in the early 1970s. We argued that web development
was effectively giving rebirth to many of the same issues that were identified two
decades earlier as the main culprits for unreadable, unmaintainable code.

Since then, we have been involved in the development of various other projects
related to web development. In this paper, a revisited version of an earlier con-
ference paper [10], we reflect upon our twelve-year adventure in web develop-
ment, focusing especially on our learnings on software development challenges
associated with web-based software development. We will revisit various top-
ics that we identified as central challenges in web development over ten years
ago. Although things have generally been moving in a better direction, we argue
that the ”organic”, rather uncontrolled evolution of the Web and the dramatic
increase in popularity of web-based software development in general have exac-
erbated the problems and the ”impedance mismatch” between web development
and software engineering [1, 11]. We will also present some interesting research
opportunities and directions for the next ten years.

The structure of this paper is as follows. We start the paper with a review
of the software engineering principles in the context of the Web, revisiting the
central challenges that we identified over ten years ago (Section 2). We then take
a look at the state of web programming today, highlighting significant changes
in web development since we started our journey many years ago (Section 3).

In Section 4, we compare the state of the art in web development today to
our earlier findings. In Section 5, we present some additional observations and
technical challenges, followed by some reflections and forward looking predictions
in Section 6. Finally, Section 7 concludes the paper.

2 Software Engineering Principles in the Context of Web
Programming

This section provides a condensed summary of our ”Spaghetti Code for the 21st
Century” paper, published as a Sun Labs Technical Report in June 2007 [9] and
as a conference paper (in somewhat shorter form) in 2008 [1]. The challenges
identified in those publications serve as the backdrop for the evaluation and
discussion later in this paper.

Back in 1968, Edsger Dijkstra started his crusade against spaghetti code
[12]. Spaghetti code is a pejorative term for source code that has a complex and
tangled control structure, especially one using many gotos, exceptions, threads,
global variables, or other ”unstructured” constructs. It is named such because
program flow tends to look like a twisted and tangled bowl of spaghetti. The
term is commonly used in negative sense to imply that a given piece of work is
difficult to understand.

As underlined by the spaghetti code controversy, software engineering re-
mained an undeveloped, unestablished practice until the late 1970s [13, 14]. Many
important principles, such as modularity, information hiding, separation of con-
cerns (especially the separation of specification from implementation), manifest
interfaces, reusability and portability did not exist or were not adopted widely
until they were introduced and instituted by Parnas, Clements, Corbató, Dahl,
Guttag, Hoare, Morris, Liskov, Zilles and many others in the seminal articles in
the 1970s and 1980s [15–30]. MacLennan has summarized many of these princi-
ples in his book that focuses on the principles of programming languages [31].

An important milestone in the codification of software engineering is the 1968
NATO Software Engineering Conference [32]. Besides introducing the idea of
reusable software and software components [33], the attendees of the conference
agreed that design concepts essential to maintainable systems are modularity
(to isolate functional elements of the system), specification (of the interface as
opposed to the implementation), and generality (required for extensibility). In
that conference, the first formal definition of software engineering was also spec-
ified. As summarized by Bauer in [32], software engineering was then defined as
the ”establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machines.”
Today, some fifty years later, that definition is still as valid as ever.

As long as the primary purpose of web development was the creation of
web sites consisting of documents, pages and forms, there was little reason to
apply established software engineering principles to web development. The web
browser, with its original design dating back to 1990, was and still is well-suited
to displaying documents and supporting simple navigation from page to page.

However, over the years web pages have increasingly taken the form of desktop-
style applications, with richer user interface and direct manipulation capabilities,
as well as more advanced asynchronous communication between the clients and
servers. The size and complexity of web applications and pages have also grown
dramatically1. This has increased the need to treat web development in the same
fashion as software development. An ad hoc, document-oriented and tool-driven
approach to web development – as was common especially in the early days of
web development – is insufficient in this regard.

In many ways, web application development in its early days was reminiscent
of software development in the 1970s before software engineering principles were
defined and systematically applied to software development. The nascent field
of Web Engineering has emerged in response to the need to introduce sound
engineering principles to web development; the first international conferences in
this area (such as the ICWE conferences) were arranged in the early 2000s.

In our ”Spaghetti Code for the 21st Century” paper, we grouped the chal-
lenges in web application development into three main categories based on well-
documented software engineering principles. These categories were: (1) modular-
ity and interfaces; (2) consistency, simplicity and elegance; and (4) reusability
and portability. Furthermore, identified two additional categories of important
challenges related to (4) usability and (5) development style.

Below we provide a condensed summary of the key challenges that we iden-
tified back in 2007. These challenges will serve as a backdrop for the updated
discussion in the rest of this paper. The abbreviations and numbers in paren-
theses below (e.g., SC#1, WI#2) will be used later in this paper to refer to the
earlier identified issues.

– Modularity and interface issues
• Separation of Concerns (SC#1): Declarative and procedural develop-

ment style are mixed up.
• Separation of Concerns (SC#2): User interface component placement,

user interface style elements, event declarations and application logic are
mixed up.

• Separation of Concerns (SC#3): Dependence on tool support.
• Well-Defined Interfaces (WI#1): No well-defined interfaces exist be-

tween the browser and other components, apart from the Document
Object Model (DOM).

• Well-Defined Interfaces (WI#2): Hard-coded references and other im-
plementation details are used openly.

• Information Hiding (IH#1): The DOM tree is exposed and manipulated
through side effects.

• Information Hiding (IH#2): Source code of applications is exposed.
• Information Hiding (IH#3): No privacy mechanisms available in Java-

Script.

1 In 2016, Wired Magazine reported that the size of the average web page had exceeded
the size of the original (year 1993) Doom multiplayer 3D computer game (https:
//www.wired.com/2016/04/average-webpage-now-size-original-doom/.)

– Consistency, simplicity and elegance issues
• Consistency (C#1): There are several ways to perform the same func-

tions.
• Consistency (C#2): Things should happen explicitly rather than through

side effects.
• Simplicity and Elegance (SE#1): Web applications are unstructured and

hard to read.
• Simplicity and Elegance (SE#2): Different types of technologies (e.g.,

HTML, JavaScript, CSS, XML) are mixed up.
– Reusability and portability issues

• Reusability (R#1): Elements of reuse are scattered and mixed with the
rest of the application.

• Reusability (R#2): Hard-coded references and other implementation de-
tails are exposed.

• Portability (P#1): There are still significant differences between browsers
and browser versions.

• Portability (P#2): Portability of (developer) experience is poor.
– Usability issues

• Usability (U#1): The browser I/O model is poorly suited to desktop-
style applications.

• Usability (U#2): The semantics of many browser features are unsuitable
for applications.

– Development style issues
• Development Style (DS#1): No transitive closure of program structures

is available statically.
• Development Style (DS#2): There is no support for static verification or

static type checking.

Each of the issues was discussed in detail in the original technical report [9]
and conference paper [1]. For a detailed description of the issues listed above,
refer to those papers. In general, our earlier studies pointed out an impedance
mismatch between software engineering and web development – the former was
already an established discipline with well-defined, mature methodologies and
commonly understood engineering practices, while the latter was based on a
combination of ad hoc practices and tools. Let us next examine the state of the
art in web development some twelve years later.

3 State of Web Programming Twelve Years Later –
General Observations

In this section we will take a look at the state of the art in web programming
today, approximately twelve years later since our original analysis. We will begin
with a general overview of the changes that have occurred in the past several
years. Later in the paper we will then reflect and map the present state in the
industry to our original findings.

3.1 The Web and the Software as a Service (SaaS) model have
redefined personal computing

Today, the use of the Web as a software platform and the benefits of the Soft-
ware as a Service model are widely understood [4, 34]. For better or worse, the
web browser has become the most commonly used desktop application; often the
users no longer open any other applications on their PCs than just the browser.
Effectively, for many average computer users today, the browser is the com-
puter. A recent VisionMobile developer survey report strongly confirmed this
observation, proposing the following key trends [6]:

– The browser has become the default interface for desktop applications.

– If the browser isn’t used to run the desktop app, it is being used to distribute
it.

– ChromeOS is gaining a foothold in Southern Asia.

Based on the points above, it is fair to say that the Web and the Soft-
ware as a Service model have redefined the notion of personal computing. Al-
though conventional desktop applications do still exist and are still widely used,
desktop applications and their deployment model are now primarily web-based.
Perhaps the most representative example of this ongoing paradigm shift is Mi-
crosoft’s web-based Office 365 productivity suite (https://www.office.com/)
that replaces Microsoft’s earlier (native) Office suite – the most iconic and
prevalent software product of the earlier PC era. This trend has also sparked
the introduction of totally new computing device categories, such as Google’s
purely browser-based Chromebook personal computers (https://www.google.
com/chromebook/) running the web-based ChromeOS operating system.

3.2 JavaScript has become a very popular programming language

Due to the central role of the web browser, JavaScript has become one of the
most popular programming languages in the world, just as we anticipated ten
years ago. While JavaScript language standardization work was stalled for many
years, there is now major progress on the standards front. The ECMAScript 6
Specification was finally published in June 2015 [35], followed by ECMAScript 7
Specification a year later [36]. Although the suitability of the JavaScript language
for large masses of software developers can still be debated, ECMAScript 6 –
also known as ECMAScript 2015 – is actually a decent and expressive program-
ming language, providing support for features such as modules, class declara-
tions, lexical block scoping, iterators and generators, promises for asynchronous
programming, and proper tail calls. Furthermore, libraries and tools have come
to rescue for numerous other problematic characteristics. For instance, Flow
(https://flow.org/) is a static type checker for JavaScript programs, which
can also determine the completeness of applications.

3.3 Interactive, visual development on the Web has become
commonplace

From the viewpoint of the original Lively Kernel vision (see [7]), it is interest-
ing to note that interactive, visual development for the Web has become com-
monplace. There are numerous interactive HTML5 programming environments
such as Cloud9 (https://c9.io/), Codepen.io (http://codepen.io/), Dab-
blet (http://dabblet.com/), JSBin (https://jsbin.com/), JSFiddle (https:
//jsfiddle.net/), and Plunker (https://plnkr.co/) that capture many of
the original qualities of the Lively vision – such as the ability to perform soft-
ware development entirely within the confines of the web browser. In the research
front, CoRED has investigated the possibilities of collaborative coding [37].

In addition, there are web curation systems (see [38]) and JavaScript visual-
ization libraries such as Chart.js (http://www.chartjs.org/), Cola.js (https:
//github.com/tgdwyer/WebCola), D3 (https://d3js.org/), and Vis.js (http:
//visjs.org/) that provide rich, interactive, animated 2D and 3D visualizations
for the Web, very much in the same fashion as we envisioned when we started
the work on the Lively Kernel back in 2006. A central difference, though, is that
these new libraries are intended primarily for data visualization rather than for
general-purpose application development.

3.4 Web browser performance and JavaScript performance have
improved dramatically

While the original versions of the Lively Kernel ran slowly, advances in web
browsers and high-performance JavaScript engines soon changed the situation
dramatically. The emergence of Google’s Chrome web browser and the V8 Java-
Script engine – created at Google by some of our former colleagues from Sun
Microsystems – kick-started web browser performance wars. Raw JavaScript ex-
ecution speed increased roughly by three orders of magnitude between years
2006 and 2013, effectively repeating the same dramatic performance advances
that had occurred with Java virtual machines ten years earlier when those VMs
evolved from simple interpreter-based systems to using advanced adaptive just-
in-time compilation techniques. Although improvements in the UI rendering area
have been less dramatic, from the end user’s perspective today’s web browsers
are easily 10-20 times faster than ten years ago [39]. This has made it possible to
run serious applications in the web browser. (Sadly, this has also enabled much
richer use of interactive advertisements on web sites.)

3.5 HTML, CSS and the DOM turned out to be much more
persistent than anticipated

The browser and JavaScript performance improvements – while definitely im-
pressive – were not really unforeseen to us. We were convinced that the perfor-
mance problems of the browser and JavaScript would ultimately get resolved.
However, what was unforeseen to us how ”sticky” the original core technologies

in web development – HTML, CSS and JavaScript – as well as the use of the
Document Object Model (DOM) would be. Our assumption was that software
developers would prefer having a more uniform, conventional set of imperative
graphics APIs – supporting direct, programmatic object manipulation much in
the same fashion as in conventional desktop operating systems – instead of us-
ing features that were originally designed for document layout rather than for
programming.

Furthermore, when we gave presentations in web developers conferences in
the late 2000s, reminding web developers of traditional software engineering prin-
ciples such as modularity, separation of concerns and the general importance of
keeping specifications and public interfaces separate from implementation de-
tails [19], web developers shrugged and noted that the use of HTML, CSS and
JavaScript already gave them the necessary separation. Likewise, the ability to
manipulate graphics by poking the global DOM tree from anywhere in the ap-
plication was seen as a perfectly acceptable way of doing things rather than as
something that would raise any serious concerns.

In recent years, things have gone in a better direction given the earlier men-
tioned modularity mechanisms that have been added to the ECMAScript lan-
guage, increasing use of RESTful APIs, as well as upcoming support for Web
Components (https://www.w3.org/TR/\#tr_Web_Components). Web Com-
ponents bring component-based software engineering principles to the World
Wide Web, including the interoperability of higher-level HTML elements, encap-
sulation, information hiding and the general ability to create reusable, higher-
level UI components that can be added flexibly to web applications.

3.6 Instant worldwide deployment and dramatically faster release
cycles have become commonplace

When the Lively Kernel project was started, the majority of software deploy-
ments at Sun Microsystems were still done in a conventional fashion by distribut-
ing physical CDs/DVDs or by making new binary installers available on the Web.
New software releases occurred relatively infrequently, perhaps a few times per
year for major software products such as the Java SDK. In contrast, web-based
systems allow changes to be published pretty much instantly worldwide.

Since the Lively Kernel was one of the first systems to boldly enter such an
instant deployment model, we had no support from tools and techniques that
have later been introduced in the context of continuous deployment [40]; this has
given rise to an entirely new development process around associated automation
and tools. In hindsight, it is amazing how quickly the traditional deployment
model was replaced by instant worldwide deployment enabled by the Software
as a Service model. This has resulted in dramatically faster release cycles as well
as in the rise of entirely new continuous development and deployment practices
methodologies across the industry, including DevOps [41]. These topics are now
so widely studied and documented that we do not need to dive more deeply into
them in this paper. For details the reader is referred to [42, 40, 43].

4 Comparing Then and Now – Reflections on Software
Engineering Principles

In our original Spaghetti paper, we divided the challenges in web-based soft-
ware development into three main categories and two additional areas based on
established software engineering principles. We will now reflect on the present
state of the art in web programming in light of those five categories. Instead of
revisiting each earlier identified issue in detail, we will provide an overview of
the key changes in the past decade in tabular format, complemented with some
discussion.

4.1 Revisiting the Modularity and Interface Issues

Originally, the most essential modularity issues that we identified were related
to the mixture of procedural and declarative programming style, the mixing
of HTML/CSS/JS code, and the common assumption that development tools
would ultimately solve the problems (instead of somebody actually addressing
the underlying core issues) [1]. We also lamented the lack of well-defined in-
terfaces and inadequate information hiding capabilities, as well as the openly
exposed nature of the DOM tree and the source code comprising web pages.

Today, most of the previously identified challenges are still present at the
browser level. For instance, the global nature of the DOM tree has not changed
much, and web development is generally still a mixture of procedural and declara-
tive development styles. However, improvements in the JavaScript/ECMAScript
language as well as the availability of richer, better-designed libraries and frame-
works has changed web development significantly. While in the earlier days the
number of JavaScript libraries was very limited, today there is an extremely
rich library ecosystem available for web development, including the currently
dominant Angular.js and React.js developer ecosystems.

Table 1 presents a condensed evaluation of the main changes related to the
modularity and interface issues that we identified back in 2007 [9]. For each pre-
viously identified issue we provide a short evaluation and comments on whether
the issue has improved or worsened over the years.

4.2 Revisiting the Consistency, Simplicity and Elegance Issues

The second big bucket of challenges in our original Spaghetti paper was related
to consistency, simplicity and elegance issues. One of the most significant obser-
vations back then was that the standards-compatible web browser offered too
many ways to perform the same functions. We also lamented the unstructured
nature of web applications, as well as the general tendency for web developers
to mix different types of technologies, paradigms and development styles.

Table 2 presents a condensed evaluation of the main changes related to the
consistency, simplicity and elegance issues that we identified back in 2007 [9].
For each previously identified issue we provide a short evaluation and comments
on whether the issue has improved or worsened over the years.

Table 1. Modularity and Interface Issues Revisited

Issue Evaluation Comments

SC#1 Improved Today, developers rarely perform low-level DHTML pro-
gramming anymore. Thus, accidental mixing of program-
ming paradigms is less common. The programming paradigm
(declarative vs. procedural) is determined largely by the
choice of libraries/frameworks on top of the web browser.

SC#2 Improved Today, developers rarely use the low-level DHTML mech-
anisms for component placement or event declarations di-
rectly. Thus, accidental mixing of different types of declara-
tions is less common. Today, these aspects are driven largely
by the choice of libraries/frameworks on top of the browser.

SC#3 Neutral In many ways, dependence on tool and library support in
web development has increased considerably over the years.
Whether this is a good or bad trend is subject to debate and
personal preferences. The availability of richer and more ma-
ture development frameworks has definitely alleviated many
of the issues identified earlier.

WD#1 Mostly neutral The number of APIs provided by a standards-compatible
web has increased over the years. However, the DOM is still
the primary communication interface inside the browser.

WD#2 Improved Today, developers rarely perform low-level DHTML pro-
gramming anymore. Thus, hard-coded references or other
implementation details are not as exposed as earlier. The
actual improvements are dependent on the choice of li-
braries/frameworks on top of the browser.

IH#1 Slightly improved The DOM is still an exposed, global data structure. Web
Components ameliorate the issues by providing support for
encapsulation, information hiding and the general ability to
create encapsulated DOM elements. However, Web Compo-
nents are not in widespread use yet.

IH#2 Neutral The source code of web applications is still as exposed as
earlier. Obfuscation techniques are used commonly by devel-
opers to hide source code.

IH#3 Improved JavaScript/ECMAScript language improvements (e.g., mod-
ules and proper lexical block scoping) that have improved the
situation and reduced the danger of accidental name clashes.

Table 2. Consistency, Simplicity and Elegance Issues Revisited

Issue Evaluation Comments

C#1 Worsened The number of programming models offered by a generic web
browser has actually increased over the years. For instance, the
introduction of the WebGL API has made it possible to perform
web rendering using yet another built-in API. Also, the number
of libraries and frameworks has increased dramatically over the
years. Thus, developers are faced with even more choices and
even more ways to perform the same functions.

C#2 Improved Today, developers rarely use the low-level DOM manipulation
operations directly. This has reduced the use of programming
styles that rely on side effects. The actual improvements in this
area are dependent on the choice of libraries/frameworks on top
of the web browser.

SE#1 Improved The availability of mature, higher-level libraries and frameworks
has improved the overall quality and structure of web applica-
tions considerably. Again, the actual improvements in this area
are driven mainly by the choice of libraries/frameworks.

SE#2 Improved Today, developers rarely perform low-level DHTML program-
ming anymore. Thus, accidental mixing of different types of
technologies and paradigms is less common. The actual im-
provements in this area are dependent on the choice of li-
braries/frameworks on top of the browser.

Discussion. In the consistency, simplicity and elegance area, things have gen-
erally been moving in a better direction. That said, today’s web application
developers are faced with an even more overwhelming cornucopia of choices in
almost all aspects of web development. A great example are the rendering mech-
anisms inside the web browser that we have studied recently in [44]. The basic
observation in that article is that the generic, standards compatible web browser
offers five overlapping rendering models: DHTML, Canvas API, WebGL, SVG
and Web Components. The developers are confronted with various choices also
in choosing communication models, e.g., whether to use Ajax [45], Comet [46],
Server-Sent Events [47], WebSockets [48], WebRTC [49]), or Web Workers [50].

In the broader picture, the deficiencies of the web browser as a software plat-
form have been tackled with an abundance of libraries. As of this writing, there
are more than 1,300 officially listed JavaScript libraries in javascripting.com,
with new ones being introduced nearly on a daily basis. Although many of the
libraries are domain-specific, a lot of them are aimed squarely at solving the
architectural limitations of the web browser, e.g., to provide a consistent set
of manifest interfaces to perform all the programming tasks. Over the years,
JavaScript libraries have evolved from mere convenience function libraries to
full-fledged Model-View-Controller (MVC) frameworks providing extensive UI
component sets, application state management, network communication and
database interfaces, and so on.

4.3 Revisiting the Reusability and Portability Issues

The third bucket of challenges in our original Spaghetti paper was related to
reusability and portability. In our earlier paper we criticized the generally un-
structured nature of web applications that made it difficult to isolate and package
components for reuse. We also lamented the incompatibilities between different
browsers and browser versions that made it burdensome to write portable code
that would work across different browsers and browser versions. Furthermore,
we noted that the abundance of different libraries and frameworks reduced the
overall portability of developer experience, since development guidelines and rec-
ommended practices for one library were typically different from other libraries.
Table 3 presents a condensed evaluation of the main changes related to the
reusability and portability issues that we identified back in 2007 [9].

Table 3. Reusability and Portability Issues Revisited

Issue Evaluation Comments

R#1 Improved Today, developers rarely perform low-level DHTML program-
ming anymore. Thus, a programming style that spreads ele-
ments of reuse in a spaghetti-like fashion is less common.
Web Components make it possible write web UI components
with proper encapsulation and information hiding. The ac-
tual improvements in this area are dependent on the choice
of libraries/frameworks on top of the web browser (including
the option to use Web Components).

R#2 Improved Today, developers rarely perform low-level DHTML program-
ming anymore. Thus, the use of hard-coded references is sig-
nificantly less common. The actual improvements in this area
are dependent on the choice of libraries/frameworks and/or
Web Components.

P#1 Improved Browser compatibility has improved significantly over the
years. For instance, the event handling capabilities of Mi-
crosoft browsers are now compatible with the other major
web browsers. There are also much better compatibility test
suites available nowadays. Then again, the rapid introduc-
tion of new browser features and APIs has a tendency to
keep browsers somewhat incompatible with each other, as the
browser vendors struggle to implement all the latest features.

P#2 Neutral or some-
what worsened

Regarding the portability of developer experience, the abun-
dance of web technologies has made things even more chal-
lenging for developers, as it is not necessarily very easy to
migrate skills learned with one library ecosystem to another.
For instance, the transition from Angular.js development to
React.js can be demanding. However, given that the majority
of today’s software developers grew up with web technologies,
they are less burdened by patterns and conventions learned
during the earlier desktop software era.

Discussion. In the reusability and portability area, things have also been mov-
ing in a better direction, primarily because the richer development frameworks,
the introduction of Web Components and new JavaScript language mechanisms
have encouraged the developers to write considerably more structured code and
components specifically intended for reuse.

However, just like ten years ago, a central problem in web application de-
velopment is browser incompatibility. While browser compatibility has generally
improved significantly over the years, the rapid pace of innovation and constant
introduction of new features has kept browsers pacing each other as browser ven-
dors have prioritized their implementation roadmaps differently. Over the years,
there have also been business and legal reasons for some of the incompatibilities,
such as the intellectual property rights issues in the media codec area. Because of
incompatibilities, developers still often depend on compatibility bridge libraries
such as Modernizr (https://modernizr.com/) that detect missing features in
the underlying browser and fill in the gaps automatically.

4.4 Revisiting the Usability and User Experience Issues

The fourth bucket of challenges in our original Spaghetti paper was related to
usability. In our earlier paper we focused the usability analysis on the impedance
mismatch between traditional desktop applications and the document-oriented,
page-oriented application model introduced by the web browser. We noted that
in web applications user interaction was based primarily on pages and hyper-
links, as opposed to PC applications that supported modern (or at least modern
back then) user interaction features such as direct manipulation, menu-oriented
navigation, and a rich set of interactive graphical widgets.

Table 4. Usability Issues Revisited

Issue Evaluation Comments

U#1 Neutral The page-oriented user interaction model can still be con-
sidered suboptimal for desktop applications. The introduc-
tion of more advanced communication capabilities in the
web browser, such as asynchronous HTTP requests [45] and
Server-Sent Events [47], have alleviated issues considerably,
though. More broadly, the web browser has become such a
dominant environment for applications that our earlier ob-
servations are mostly irrelevant nowadays.

U#2 Neutral The semantics of many of the browser buttons and other
features (e.g., the context menus that open up when right-
clicking objects in a desktop browser) are still poorly suited
to applications. However, the web browser has become such
a dominant environment for applications that our earlier ob-
servations are mostly irrelevant nowadays.

Table 4 presents a condensed evaluation of the main changes related to the
usability and user experience issues that we identified back in 2007 [9].

Discussion. Overall, the user experience of the web browser has not changed
very much from the page-oriented back-forward-reload metaphor introduced by
the NCSA Mosaic browser in the early 1990s [51]. Ten years ago, the page-
oriented interaction and navigation model of the web browser seemed like a
throwback to an earlier era. We remarked that the interaction model of the web
browser was reminiscent of the I/O model of the IBM 3270 series terminals of
the 1970s – in both systems the entire display was updated in response to each
successful user-initiated network request. We also lamented the poorly defined
semantics of many of the browser functions and buttons. For instance, semantics
of the ’back’, ’stop’ and ’reload’ buttons were unclear when these features were
used in desktop-style web applications.

Even today, it still is not entirely clear to the user what will happen if the user
presses the ’back’, ’stop’ or ’reload’ button during a financial transaction initiated
from a browser-based banking or stock trading application. To avoid potentially
harmful (and expensive) interactions, some web applications explicitly disable
many of the browser’s navigation buttons.

Interestingly, even though the observations that we presented earlier are still
valid today, the usability issues have become mostly irrelevant because of the
dominant role that the web browser and the Software as a Service (SaaS) model
have today. Nowadays, the majority of computer users are so accustomed to
the web browser and its user interface that they rarely miss the features or
conventions of the earlier PC-era desktop applications. Browser-based interaction
has simply become the norm also for desktop applications2. For the average
computer user, the web browser effectively is the application platform now.

It should be noted that the adoption of Single-Page Application (SPA) devel-
opment style [52, 53] and its support in popular frameworks such as Angular.js
[54] have improved the overall user experience considerably for those web sites
that wish to behave more like classic desktop applications. Nevertheless, we still
think that a lot of room remains in improving the overall usability of web appli-
cations. Those discussions are beyond the scope of this paper, however.

4.5 Revisiting the Development Style Issues

The fifth and last bucket of challenges in our original Spaghetti paper was related
to development style. We pointed out that the field of web programming bears
the imprint of the document-oriented – as opposed to application-oriented –
roots of the Web. The programming capabilities of the Web have largely been
an afterthought – designed originally for relatively simple scripting tasks. For
instance, the JavaScript language was originally created by Brendan Eich in ten
days in May 1995.

2 Even this paper was written using the online tool Overleaf instead of a conventional,
PC-based word processing application such as Microsoft Word.

In our earlier paper the analysis of development style issues focused primarily
on the differences that arise from the use of dynamic vs. static programming
languages. Ten years ago, the software development landscape was dominated by
statically compiled programming languages such as C, C++ and Java. The use
of interpreted, dynamic programming languages such as Lisp, Scheme, Python
or JavaScript was limited. Today, dynamic languages (especially JavaScript and
Python) have a central role especially in client-side development, driven by the
expectation and need to have much shorter release cycles and the ability to
perform changes in near real time [55].

Table 5 presents a condensed evaluation of the main changes related to the
development style issues that we identified back in 2007 [9].

Table 5. Development Style Issues Revisited

Issue Evaluation Comments

DS#1 Improved An abundance of tools is available nowadays to ensure the
completeness of web applications. For instance, the earlier
mentioned Flow tool (https://flow.org/) is a static type
checker for JavaScript programs that can also determine the
completeness of applications. Tools such as Webpack module
bundler can also help in packaging applications and make sure
they contain all the necessary components.

DS#2 Improved An abundance of tools is available nowadays to support
static verification and static type checking of web appli-
cations. There are also JavaScript language extensions and
variants such as TypeScript that make optional type check-
ing available with the latest ECMAScript features (https:
//www.typescriptlang.org/).

5 Comparing Then and Now – Additional Observations

In our WEBIST conference paper published in 2017, we listed a number of
additional topic areas and web application development issues that were not
covered by our original Spaghetti evaluation framework presented over ten years
earlier. Below we summarize these additional observations and challenges. Some
of these topics arise from the security limitations of the web browser, while other
topics arise from the dramatically faster development cycles that have become
commonplace in the past 5-10 years.

Limited access to local resources or host platform capabilities. Web
documents and applications are run in a sandbox that places significant restric-
tions on the resources and host platform capabilities that the web browser can
access. For instance, access to local files on the machine in which the web browser
is being run is not allowed, apart from reading and writing cookies and using

the localStorage mechanism. While these security restrictions prevent mali-
cious access, they make it difficult to build web applications that utilize local
resources or host platform capabilities. Consequently, the functionality that can
be offered by web applications is still significantly more limited than that of
native applications. In this area things have not changed very much in the past
ten years.

Mobile computing is still dominated by apps – for now. During the
original development of the Lively Kernel system in 2006-2008, we were aiming
at making the system run well also on mobile web browsers. Although the feasi-
bility of running the system on mobile devices was demonstrated [56], in practice
mobile devices and browsers were still so slow those days that no serious mo-
bile Lively applications could be built. Furthermore, the considerably smaller
screen sizes, different input modalities and limited mobile OS API access made
it difficult to develop and run applications on mobile devices.

The technical reasons for the desktop and mobile app divergence are well un-
derstood nowadays [57, 58]. A major contributor to the divergence is the limited
access to the underlying platform capabilities mentioned above. One approach
for tackling the shortcomings of the Web as a mobile platform is to use cross-
platform or hybrid app designs [59, 3]. In the late 2000s, so called Rich Internet
Application (RIA) platforms such as Adobe AIR, Apache Cordova [60] (formerly
PhoneGap) and Microsoft Silverlight [61] were very popular. RIA systems were
an attempt to bring alternative programming languages and libraries to the Web
in the form of browser plug-in components that each provided a complete, more
efficient platform runtime (see [3]). However, just as it was predicted in [62], the
RIA phenomenon turned out to be rather short-lived.

More broadly, it is interesting to note that in the past ten years desktop
computing and mobile computing have evolved in entirely different directions.
While personal computers are now driven mostly by the Software as a Service
model, mobile devices are still dominated by native or hybrid apps. This di-
vergence is unlikely to continue indefinitely. There are already indications that
desktop and mobile operating systems will ultimately converge. For instance,
Microsoft’s latest Windows 10 Mobile operating system represents an attempt
to unify Windows application platform across multiple device classes.

Fine-grained security model is still missing. Compared to traditional
desktop applications, web applications can still be viewed as second-class citizens
that are at the mercy of the classic, one size fits all sandbox security model
of the web browser. This means that decisions about security are determined
primarily by the site (origin) from which the application is loaded, and not by
the specific needs of the application itself. The situation is further complicated by
opportunistic designs and mashware paradigm, where applications are composed
out of data and code available from various web sites [11, 63].

Testing of web applications is still challenging. Related to testing, web
applications are generally so dynamic that it is impossible to know statically –
ahead of application execution – if all the structures that the program depends on
will be available at runtime. While web browsers are designed to be error-tolerant

and will ignore incomplete or missing elements, in some cases the absence of
elements can lead to fatal runtime problems that are impossible to detect before
execution. Furthermore, with scripting languages such as JavaScript applications
can even modify themselves on the fly, and there is no way to statically detect the
possible errors resulting from such modifications. Consequently, web applications
require significantly more testing to make sure that all the possible application
behaviors and paths of execution are covered.

Forgiveness and error-tolerance. The web browser and the JavaScript
virtual machine have been designed to be extremely permissive and error-tolerant.
As a general principle, errors are not reported unless absolutely necessary. For
instance, spelling errors in JavaScript variable names implicitly result in the cre-
ation of a new variable with the misspelled name. Likewise, minor accidental
syntax errors, such as using square brackets ”[]” instead of parentheses ”()”,
e.g., in string indexing operation "String.chatAt()", will go unreported and
can lead to problems that are very difficult to trace. While such permissiveness
enables the successful execution of source code that contains spelling errors, this
usually results in other, significantly more difficult errors later in the execution.
When an error is finally reported, the actual problems hides elsewhere in the pro-
gram. Such problems multiply when creating web-based mashups that combine
code from multiple sources and different authors [64, 11].

Challenges arising from the forgiving, permissive nature of the web browser
and JavaScript are tackled primarily by tools. However, declarative applications
are not easy to test with present-day tools; they rely on, e.g., test coverage that
has little meaning in a declarative setup. Furthermore, coverage testing has very
little meaning if the application relies extensively on external libraries and mod-
ules. For instance, in a typical Node.js application today, the amount of actual
application code is often marginal compared to the thousands of NPM modules
that the application uses. In such an environment, actual application code may
only consist of a few hundred or thousand lines, while the NPM modules used
by the application contain millions of lines of code from external sources.

Fashion-driven development. Over the past years there has been a no-
table trend in the library area towards fashion-driven development. By this we
refer to the developers’ tendency to surf on the wave of newest and most dom-
inant ”alpha” frameworks. For instance, the once hugely popular Prototype.js
and JQuery.js libraries are nowadays mostly forgotten, replaced by Knockout.js
and Backbone.js in 2012. Back in 2014, Angular.js was by far the most dominant
alpha framework, while in 2016-2017 it is the React.js + Redux.js ecosystem that
is capturing the majority of developer attention. As witnessed by the somewhat
unfortunate recent evolution of the Angular ecosystem, the alpha frameworks
have a tendency to evolve very quickly once they get developers’ attention, lead-
ing into compatibility issues. To make the matters worse, once the next fashion-
able major framework emerges and hordes of developers start jumping ship onto
the new one, it becomes questionable to what extent one can build long-lasting
business-critical applications and services, e.g., for the medical industry in which
products must commonly have a minimum lifetime of twenty years. With the

present pace of upgrades, the browser and the web server as the runtime environ-
ment would be almost completely replaced by patches, upgrades, and updates;
similarly, most of the libraries would be replaced several times by newer ones.

Opportunistic design and cargo cult programming. In web develop-
ment there has historically been a strong tradition of mashup-based development
[64, 11]: searching, selecting, pickling, mashing up and gluing together disparate
libraries and pieces of software [63]. Often such development has the characteris-
tics of cargo cult programming3: ritually including code and program structures
that serve no real purpose or that the programmer has chosen to include because
hundreds of other developers have done so – without really understanding why.
While this approach can save a lot of work and open up interesting opportuni-
ties for large-scale code reuse [64, 65], this approach does not foster development
of reliable, long-lasting applications, because even the smallest changes in the
constituent components or subsystems – each of which evolves separately and
independently – can break applications [66]. In Node.js development, oppor-
tunistic design is especially common, as the developers often include numerous
NPM modules for convenience, or simply because many their colleagues or other
developers have done so.

6 Reflections and the Road Forward

In striking contrast with the situation twelve years ago, there is now an incredible
amount of innovation in the web development area. End user sofware has largely
migrated to the Web, JavaScript has become one of the most popular program-
ming languages in the world, and new libraries and tools have become available
almost on a weekly (if not daily) basis (see, e.g., http://www.javascripting.
com/). The rapid pace of innovation and rather uncontrolled, organic evolution
of the Web have resulted in a situation in which there are numerous ways to
build applications on the Web – many more than most people realize, and also
arguably more than are really needed. This has put the developers in a complex
position in which it is difficult to choose technologies that would be guaranteed
to still be around and supported ten years from now.

While the overall complexity of the web application development scene has
increased, there have been improvements in nearly all the problem areas that
we identified earlier. For instance, as already mentioned, there has finally been
tremendous progress in ECMAScript (JavaScript) language standardization [35,
36]. Furthermore, newer browsers – in particular Microsoft’s Edge browser4 that
has replaced Internet Explorer – are significantly more compatible with each
other than dominant browsers ten years ago. We are confident that similar
compatibility improvements will find eventually their way also to mobile web
browsers that still have more significant feature deviations today (there is a
good overview available at http://mobilehtml5.org/).

3 https://en.wikipedia.org/wiki/Cargo cult programming
4 https://www.microsoft.com/en-us/windows/microsoft-edge

In the same vein, Web Components offer hope that well-known (but hith-
erto missing) software engineering principles and practices will eventually find
their way into the web browser, including modularity and the ability to create
higher-level, general-purpose UI components that can be flexibly added to web
applications. Web components are still the ”dark horse” in web development –
they are little known to most developers, and it is difficult to place betting odds
on their eventual success. Web components cater to nearly any imaginable use
case but they are especially well-suited to the development of full-fledged web
applications that require an extensible set of GUI widgets.

Looking forward, we predict that the current transition towards the Internet
of Things (IoT) and the Web of Things (WoT) will drive the industry towards
systems that have much better support for interactive development and pro-
gramming. We are moving to the Programmable World Era in which literally
all everyday objects will be connected to the Internet and will have enough
computing, storage and networking capabilities to host a dynamic program-
ming environment, thus turning everyday objects remotely programmable [67,
68]. Such a dynamic programming vision is actually very close to one of our
central goals when we started the Lively Kernel system development back at
Sun Microsystems Labs in 2006 [8].

For better or worse, everyday objects around us will have more computing
power, storage capacity and network bandwidth than computers that were used
for entire computing departments in the 1970s and 1980s. The availability and
presence of such capabilities will open up tremendous possibilities for entirely
new types of applications and services. Many of the platforms under development
for the IoT domain leverage Node.js, which effectively means that JavaScript may
well become the de facto programming language for IoT applications as well.

The Internet of Things area offers a natural playground for dynamic program-
ming capabilities provided by live object systems such as the Lively Kernel. To
this end, we plan to harness and leverage the Lively environment as a web-based
graphical end-user programming environment for IoT devices, with the goal to
realize the broader Programmable World vision by implementing the same kind
of direct manipulation capabilities that demonstrated earlier. The key difference
is that rather than just making the World Wide Web more lively, we now aim
at making the entire world around us programmable in an effortless and lively
fashion (”Lively Things”) [8].

7 Conclusions

The World Wide Web is the most powerful medium for information sharing
in the history of humankind. Somewhat accidentally, the success of the Web
has turned the web browser also into a dominant platform for end-user software.
Today, the Software as a Service (SaaS) model is prevalent on desktop computers,
while traditional installed applications still maintain a stronghold in the mobile
application area.

Over ten years ago, we published a number of papers on the emergence of
the Web as a software platform. We noted that the field of web programming
bears the imprint of the document-oriented – as opposed to application-oriented
– roots of the Web. We pointed out that the programming capabilities of the
Web have largely been an afterthought – designed originally by non-programmers
for relatively simple scripting tasks. We examined the state of the art in web
software development in light of established software engineering principles, and
enumerated issues that plagued web application development at the time. Those
issues reminisced us of the fabled ”spaghetti code wars” in the early 1970s.

In this paper, we have revisited our earlier findings and examined the state of
the art in web software development today based on our experiences and learn-
ings from various web development projects in the past twelve years. In almost
all areas and issues that we identified a decade earlier, things have generally been
moving in a better direction. However, at the same time the overall complexity
of the web development landscape has increased considerably, reflecting the vast
amount of innovation and interest in this space.

Furthermore, while there has recently been tremendous progress in Java-
Script language evolution and in improving JavaScript performance, the ma-
jority of innovation has occurred in higher layers parts of the stack (e.g., in
developing more comprehensive and powerful libraries and frameworks), leaving
some of the core issues – such as the overall complexity of the web browser –
still unaddressed.

Looking forward, we believe that interactive, web-based software develop-
ment capabilities will become even more important in the future as the industry
moves towards the Programmable World Era in which everyday objects around
us will become connected and programmable.

References

1. Mikkonen, T., Taivalsaari, A.: Web Applications – Spaghetti Code for the 21st
Century. In: Proc. Int’l Conf. Software Engineering Research, Management and
Applications (SERA’2008, Prague, Czech Republic, August 20-22, 2008), IEEE
Computer Society (2008) 319–328

2. Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K.: Web Browser as an Ap-
plication Platform. In: 34th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA’2008, Parma, Italy, September 3-5, 2008), IEEE
Computer Society (2008) 293–302

3. Casteleyn, S., Garrigós, I., Mazón, J.N.: Ten Years of Rich Internet Applications:
A Systematic Mapping Study, and Beyond. ACM Trans. Web 8(3) (July 2014)
18:1–18:46

4. Turner, M., Budgen, D., Brereton, P.: Turning Software into a Service. Computer
36(10) (2003) 38–44

5. Petsas, T., Papadogiannakis, A., Polychronakis, M., Markatos, E.P., Karagiannis,
T.: Rise of the Planet of the Apps: A Systematic Study of the Mobile App Ecosys-
tem. In: Proceedings of the 2013 Internet Measurement Conference, ACM (2013)
277–290

6. VisionMobile: Cloud and Desktop Developer Landscape. http://www.

visionmobile.com/product/cloud-and-desktop-developer-landscape/ (2016)
[Online; accessed 5-March-2016].

7. Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K.: Web Browser as an Applica-
tion Platform: The Lively Kernel Experience. Technical report, TR-2008-175, Sun
Microsystems Laboratories (2008)

8. Ingalls, D., Felgentreff, T., Hirschfeld, R., Krahn, R., Lincke, J., Röder, M., Taival-
saari, A., Mikkonen, T.: A World of Active Objects for Work and Play: The First
Ten Years of Lively. In: Proceedings of SPLASH’2016 Onward! Track (Amsterdam,
the Netherlands, October 30 - November 4, 2016). (2016) 238–249

9. Mikkonen, T., Taivalsaari, A.: Web Applications: Spaghetti Code for the 21st Cen-
tury. Technical Report TR-2007-166, Sun Microsystems Labs, June 2007 (2007)

10. Taivalsaari, A., Mikkonen, T.: The Web as a Software Platform: Ten Years Later.
In: Proceedings of the WEBIST’17 Conference, Porto, Portugal. (2017)

11. Mikkonen, T., Taivalsaari, A.: The Mashware Challenge: Bridging the Gap Between
Web Development and Software Engineering. In: Proceedings of the FSE/SDP
workshop on Future of software engineering research, ACM (2010) 245–250

12. Dijkstra, E.W.: Letters to the Editor: Go To Statement Considered Harmful.
Communications of the ACM 11(3) (1968) 147–148

13. Dijkstra, E.W.: Programming: From Craft to Scientific Discipline. In: International
Computing Symposium. (1977) 23–30

14. Hoare, C.: Programming: Sorcery or Science? IEEE Software 1(2) (1984) 5
15. Corbato, F.: Sensitive Issues in the Design of Multi-Use Systems. Technical report,

DTIC Document (1968)
16. Parnas, D.L.: Information Distribution Aspects of Design Methodology. (1971)
17. Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic

Press Ltd. (1972)
18. Parnas, D.L.: A Technique for Software Module Specification with Examples.

Communications of the ACM 15(5) (1972) 330–336
19. Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules.

Communications of the ACM 15(12) (1972) 1053–1058
20. Parnas, D.L.: On the Design and Development of Program Families. IEEE Trans-

actions on software engineering (1) (1976) 1–9
21. Parnas, D.L.: Designing Software for Ease of Extension and Contraction. In:

Proceedings of the 3rd international conference on Software engineering, IEEE
Press (1978) 264–277

22. Parnas, D.L., Clements, P.C., Weiss, D.M.: Enhancing Reusability with Informa-
tion Hiding. Tutorial: Software Reusability (1983) 83–90

23. Parnas, D.L., Clements, P.C.: A Rational Design Process: How and Why to Fake
It. IEEE transactions on software engineering (2) (1986) 251–257

24. Morris Jr, J.H.: Protection in Programming Languages. Communications of the
ACM 16(1) (1973) 15–21

25. Morris Jr, J.H.: Types are Not Sets. In: Proceedings of the 1st annual ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, ACM
(1973) 120–124

26. Liskov, B., Zilles, S.: Programming with Abstract Data Types. In: ACM Sigplan
Notices. Volume 9., ACM (1974) 50–59

27. Liskov, B., Zilles, S.: Specification Techniques for Data Abstractions. In: ACM
SIGPLAN Notices. Volume 10., ACM (1975) 72–87

28. Guttag, J.: Abstract Data Types and the Development of Data Structures. Com-
munications of the ACM 20(6) (1977) 396–404

29. Zilles, S.N.: Procedural Encapsulation: a Linguistic Protection Technique. In:
ACM Sigplan Notices. Volume 8., ACM (1973) 142–146

30. Corbató, F.J.: On Building Systems that Will Fail. In: ACM Turing award lectures,
ACM (2007) 1990

31. MacLennan, B.J.: Principles of Programming Languages: Design, Evaluation, and
Implementation. Oxford University Press (1999)

32. Naur, P., Randell, B.: Software Engineering: Report of a Conference Sponsored
by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels,
Scientific Affairs Division, NATO. (1969)

33. McIlroy, M.D., Buxton, J., Naur, P., Randell, B.: Mass-Produced Software Compo-
nents. In: Proceedings of the 1st International Conference on Software Engineering,
Garmisch Pattenkirchen, Germany. (1968) 88–98

34. Bouzid, A., Rennyson, D.: The Art of SaaS: A Primer on the Fundamentals of
Building and Running a Successful SaaS Business. Xlibris (2015)

35. ECMAInternational: ECMAScript 2015 Language Specification, Standard ECMA-
262, 6th Edition, June 2015. http://www.ecma-international.org/ecma-262/6.
0/ (2015) [Online; accessed 22-Feb-2017].

36. ECMAInternational: ECMAScript 2016 Language Specification, Standard ECMA-
262, 7th Edition, June 2016. http://www.ecma-international.org/ecma-262/7.
0/ (2016) [Online; accessed 22-Feb-2017].

37. Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T., Mikkonen, T., Englund, M.:
CoRED: Browser-Based Collaborative Real-time Editor for Java Web Applications.
In: Proceedings of the ACM 2012 conference on Computer Supported Cooperative
Work, ACM (2012) 1307–1316

38. Lupfer, N., Kerne, A., Webb, A.M., Linder, R.: Patterns of Free-form Curation:
Visual Thinking with Web Content. In: Proceedings of the 2016 ACM on Multi-
media Conference (MM’16, Amsterdam, The Netherlands, October 15-19, 2016).
(2016) 12–21

39. Wagner, J.L.: Web Performance in Action: Building Fast Web Pages. Manning
(2016)

40. Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.P., Itkonen, J., Mäntylä, M.V.,
Männistö, T.: The Highways and Country Roads to Continuous Deployment. IEEE
Software 32(2) (2015) 64–72

41. Debois, P.: Devops: A Software Revolution in the Making. Journal of Information
Technology Management 24(8) (2011) 3–39

42. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the ”Stairway to Heaven” – A
Multiple-Case Study Exploring Barriers in the Transition from Agile Develop-
ment towards Continuous Deployment of Software. In: Software Engineering and
Advanced Applications (SEAA), 2012 38th EUROMICRO Conference on, IEEE
(2012) 392–399

43. Fitzgerald, B., Stol, K.J.: Continuous Software Engineering: A Roadmap and
Agenda. Journal of Systems and Software 123 (2017) 176–189

44. Taivalsaari, A., Mikkonen, T., Pautasso, C., Systä, K.: Comparing the Built-In
Application Architecture Models in the Web Browser. In: Software Architecture
(ICSA), 2017 IEEE International Conference on, IEEE (2017) 51–54

45. Garrett, J.J.: Ajax: A New Approach to Web Applications
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/, 18 Febru-
ary 2005.

46. Crane, D., McCarthy, P.: What Are Comet and Reverse Ajax? Springer (2009)
47. Hickson, I.: Server-Sent Events. W3C Recommendation 03 February 2015, latest

version available at http://www.w3.org/TR/eventsource/ (2015)

48. Pimentel, V., Nickerson, B.G.: Communicating and Displaying Real-time Data
with WebSocket. IEEE Internet Computing 16(4) (2012) 45–53

49. Bergkvist, A., Burnett, D.C., Jennings, C., Narayanan, A.: WebRTC 1.0: Real-time
Communication Between Browsers. Working draft, W3C (2012)

50. W3C: W3C Schools – HTML Web Workers Example, http://www.w3schools.

com/html/html5_webworkers.asp.
51. Darken, R.: Breaking the Mosaic Mold. IEEE Internet Computing 2(3) (1998) 97
52. Mesbah, A., Van Deursen, A.: Migrating Multi-Page Web Applications to Single-

Page Ajax Interfaces. In: 11th European Conference on Software Maintenance and
Reengineering CSMR’07, IEEE (2007) 181–190

53. Mikowski, M.S., Powell, J.C.: Single Page Web Applications: JavaScript End-to-
End. Manning (2013)

54. Jadhav, M.A., Sawant, B.R., Deshmukh, A.: Single Page Application using An-
gularJS. International Journal of Computer Science and Information Technologies
6(3) (2015)

55. Poulson, L.D.: Developers Shift to Dynamic Programming Languages. IEEE Com-
puter 40(2) (2007) 12–15

56. Mikkonen, T., Taivalsaari, A.: Creating a Mobile Web Application Platform: The
Lively Kernel Experiences. In: Proceedings of the 24th ACM Symposium on Ap-
plied Computing (SAC’2009), proceedings vol 3. (2009) 177–184

57. Charland, A., Leroux, B.: Mobile Application Development: Web vs. Native. Com-
munications of the ACM 54(5) (2011) 49–53

58. Joorabchi, M.E., Mesbah, A., Kruchten, P.: Real Challenges in Mobile App De-
velopment. In: 2013 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, IEEE (2013) 15–24

59. Dalmasso, I., Datta, S.K., Bonnet, C., Nikaein, N.: Survey, Comparison and Eval-
uation of Cross Platform Mobile Application Development Tools. In: Wireless
Communications and Mobile Computing Conference (IWCMC), 2013 9th Interna-
tional, IEEE (2013) 323–328

60. Wargo, J.M.: Apache Cordova 4 Programming. Pearson Education (2015)
61. Moroney, L.: Microsoft Silverlight 4 Step by Step. Microsoft Press (2010)
62. Taivalsaari, A., Mikkonen, T.: The Web as an Application Platform: The Saga

Continues. In: 37th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA’2011, Oulu, Finland, August 30 - September 2, 2011), IEEE
Computer Society (2011) 170–174

63. Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, Mashing, Gluing: Under-
standing Opportunistic Design. Pervasive Computing, IEEE 7(3) (2008) 46–54

64. Taivalsaari, A., Mikkonen, T.: Mashups and Modularity: Towards Secure and
Reusable Web Applications. In: Automated Software Engineering-Workshops,
2008. ASE Workshops 2008. 23rd IEEE/ACM International Conference on, IEEE
(2008) 25–33

65. Salminen, A., Mikkonen, T.: Mashups: Software Ecosystems for the Web Era. In:
IWSECO@ICSOB (International Conference on Software Business). (2012) 18–32

66. Salminen, A., Mikkonen, T., Nyrhinen, F., Taivalsaari, A.: Developing Client-
Side Mashups: Experiences, Guidelines and the Road Ahead. In: Proc. 14th Int’l
Academic MindTrek Conference: Envisioning Future Media Environments, ACM
(2010) 161–168

67. Wasik, B.: In the Programmable World, All Our Objects Will Act as One. Wired
(May 2013) (2013) 462

68. Taivalsaari, A., Mikkonen, T.: Roadmap to the Programmable World: Software
Challenges in the IoT Era. IEEE Software, Jan/Feb 2017 34(1) (2017) 72–80

