229 research outputs found

    Prehistory of Transit Searches

    Full text link
    Nowadays the more powerful method to detect extrasolar planets is the transit method. We review the planet transits which were anticipated, searched, and the first ones which were observed all through history. Indeed transits of planets in front of their star were first investigated and studied in the solar system. The first observations of sunspots were sometimes mistaken for transits of unknown planets. The first scientific observation and study of a transit in the solar system was the observation of Mercury transit by Pierre Gassendi in 1631. Because observations of Venus transits could give a way to determine the distance Sun-Earth, transits of Venus were overwhelmingly observed. Some objects which actually do not exist were searched by their hypothetical transits on the Sun, as some examples a Venus satellite and an infra-mercurial planet. We evoke the possibly first use of the hypothesis of an exoplanet transit to explain some periodic variations of the luminosity of a star, namely the star Algol, during the eighteen century. Then we review the predictions of detection of exoplanets by their transits, those predictions being sometimes ancient, and made by astronomers as well as popular science writers. However, these very interesting predictions were never published in peer-reviewed journals specialized in astronomical discoveries and results. A possible transit of the planet beta Pic b was observed in 1981. Shall we see another transit expected for the same planet during 2018? Today, some studies of transits which are connected to hypothetical extraterrestrial civilisations are published in astronomical refereed journals. Some studies which would be classified not long ago as science fiction are now considered as scientific ones.Comment: Submiited to Handbook of Exoplanets (Springer

    Ultrasensitivity of the Bacillus subtilis sporulation decision

    Get PDF
    Starving Bacillus subtilis cells execute a gene expression program resulting in the formation of stress-resistant spores. Sporulation master regulator, Spo0A, is activated by a phosphorelay and controls the expression of a multitude of genes, including the forespore- specific sigma factor σF and the mother cell-specific sigma factor σE. Identification of the system-level mechanism of the sporulation decision is hindered by a lack of direct control over Spo0A activity. This limitation can be overcome by using a synthetic system in which Spo0A activation is controlled by inducing expression of phosphorelay kinase KinA. This induction results in a switch-like increase in the number of sporulating cells at a threshold of KinA. Using a combination of mathematical modeling and single-cell microscopy, we investigate the origin and physiological significance of this ultrasensitive threshold. The results indicate that the phosphorelay is unable to achieve a sufficiently fast and ultrasensitive response via its positive feedback architecture, suggesting that the sporulation decision is made downstream. In contrast, activation of σF in the forespore and of σE in the mother cell compartments occurs via a cascade of coherent feed-forward loops, and thereby can produce fast and ultrasensitive responses as a result of KinA induction. Unlike σF activation, σE activation in the mother cell compartment only occurs above the KinA threshold, resulting in completion of sporulation. Thus, ultrasensitive σE activation explains the KinA threshold for sporulation induction. We therefore infer that under uncertain conditions, cells initiate sporulation but postpone making the sporulation decision to average stochastic fluctuations and to achieve a robust population response

    Structural basis of outer membrane protein insertion by the BAM complex

    Get PDF
    All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the β-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB–BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane β-barrel of BamA to induce movement of the β-strands of the barrel and promote insertion of the nascent OMP

    Leptospira seroprevalence and associations between seropositivity, clinical disease and host factors in horses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cross-sectional study was carried out to determine the seroprevalence of different serovars of <it>Leptospira </it>spp. and their association with clinical disease and host factors in Swedish horses.</p> <p>Methods</p> <p>Sera from 2017 horses brought to equine clinics during 1997–98 were investigated. The sera were examined by microscopic agglutination test for the presence of antibodies against the following <it>L. interrogans </it>serovars: Bratislava strain Jez, Icterohaemorrhagiae strain Kantorowicz and Pomona strain Pomona and also <it>L. kirschneri </it>sv Grippotyphosa strain Duyster and <it>L. borgpetersenii </it>sv Sejroe strain M 84. Host factors, disease factors, season, pasture access and outdoor confinement variables were analysed with respect to seropositivity to sv Bratislava and Icterohaemorrhagiae. Multivariable logistic regression was used to model seropositivity to sv Bratislava and Icterohaemorrhagiae (seroprevalence > 8%).</p> <p>Results</p> <p>The seroprevalence, at a cut-off 1:100, were for sv Bratislava (16.6%), Icterohaemorrhagiae (8.3%), Sejroe (1.2%), Pomona (0.5%) and Grippotyphosa (0.4%). In the multivariable analysis, it was demonstrated that seroprevalence increased with age for sv Bratislava and Icterohaemorrhagiae. For sv Bratislava the seasons April – June and October – December and for sv Icterohaemorrhagiae October – December had higher seroprevalences than other seasons. Horses not used for racing had higher levels of seropositivity to sv Bratislava. Furthermore, horses with respiratory problems as well as horses with fatigue had higher levels of seropositivity to sv Bratislava. Ponies and coldbloods, and horses with access to pasture, had lower seroprevalence for sv Icterohaemorrhagiae. Healthy horses had lower seroprevalence for sv Icterohaemorrhagiae, than non-healthy horses.</p> <p>Conclusion</p> <p>There was no significant association between clinical signs and disease and positive titres to sv Bratislava (except for the association between respiratory problems and fatigue and seropositivity to sv Bratislava). The results suggest that horses with increasing age and exposed to factors associated with outdoor life had an increased seroprevalence for sv Bratislava, indicating that horses get infected from outdoor and/or are exposed to shedding from other horses (management dependent). For sv Icterohaemorrhagiae, management possibly plays a role as ponies and coldbloods as well as healthy horses had lower seroprevalence. Overall, the age of the horse should be taken into consideration when evaluating the titre as the average healthy horse has a higher titre than a young horse.</p

    The genetic organisation of prokaryotic two-component system signalling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-component systems (TCSs) are modular and diverse signalling pathways, involving a stimulus-responsive transfer of phosphoryl groups from transmitter to partner receiver domains. TCS gene and domain organisation are both potentially informative regarding biological function, interaction partnerships and molecular mechanisms. However, there is currently little understanding of the relationships between domain architecture, gene organisation and TCS pathway structure.</p> <p>Results</p> <p>Here we classify the gene and domain organisation of TCS gene loci from 1405 prokaryotic replicons (>40,000 TCS proteins). We find that 200 bp is the most appropriate distance cut-off for defining whether two TCS genes are functionally linked. More than 90% of all TCS gene loci encode just one or two transmitter and/or receiver domains, however numerous other geometries exist, often with large numbers of encoded TCS domains. Such information provides insights into the distribution of TCS domains between genes, and within genes. As expected, the organisation of TCS genes and domains is affected by phylogeny, and plasmid-encoded TCS exhibit differences in organisation from their chromosomally-encoded counterparts.</p> <p>Conclusions</p> <p>We provide here an overview of the genomic and genetic organisation of TCS domains, as a resource for further research. We also propose novel metrics that build upon TCS gene/domain organisation data and allow comparisons between genomic complements of TCSs. In particular, '<it>percentage orphaned TCS genes</it>' (or 'Dissemination') and '<it>percentage of complex loci</it>' (or 'Sophistication') appear to be useful discriminators, and to reflect mechanistic aspects of TCS organisation not captured by existing metrics.</p

    Anti-infectives in Drug Delivery-Overcoming the Gram-Negative Bacterial Cell Envelope.

    Get PDF
    Infectious diseases are becoming a major menace to the state of health worldwide, with difficulties in effective treatment especially of nosocomial infections caused by Gram-negative bacteria being increasingly reported. Inadequate permeation of anti-infectives into or across the Gram-negative bacterial cell envelope, due to its intrinsic barrier function as well as barrier enhancement mediated by resistance mechanisms, can be identified as one of the major reasons for insufficient therapeutic effects. Several in vitro, in silico, and in cellulo models are currently employed to increase the knowledge of anti-infective transport processes into or across the bacterial cell envelope; however, all such models exhibit drawbacks or have limitations with respect to the information they are able to provide. Thus, new approaches which allow for more comprehensive characterization of anti-infective permeation processes (and as such, would be usable as screening methods in early drug discovery and development) are desperately needed. Furthermore, delivery methods or technologies capable of enhancing anti-infective permeation into or across the bacterial cell envelope are required. In this respect, particle-based carrier systems have already been shown to provide the opportunity to overcome compound-related difficulties and allow for targeted delivery. In addition, formulations combining efflux pump inhibitors or antimicrobial peptides with anti-infectives show promise in the restoration of antibiotic activity in resistant bacterial strains. Despite considerable progress in this field however, the design of carriers to specifically enhance transport across the bacterial envelope or to target difficult-to-treat (e.g., intracellular) infections remains an urgently needed area of improvement. What follows is a summary and evaluation of the state of the art of both bacterial permeation models and advanced anti-infective formulation strategies, together with an outlook for future directions in these fields

    Reversible and Noisy Progression towards a Commitment Point Enables Adaptable and Reliable Cellular Decision-Making

    Get PDF
    Cells must make reliable decisions under fluctuating extracellular conditions, but also be flexible enough to adapt to such changes. How cells reconcile these seemingly contradictory requirements through the dynamics of cellular decision-making is poorly understood. To study this issue we quantitatively measured gene expression and protein localization in single cells of the model organism Bacillus subtilis during the progression to spore formation. We found that sporulation proceeded through noisy and reversible steps towards an irreversible, all-or-none commitment point. Specifically, we observed cell-autonomous and spontaneous bursts of gene expression and transient protein localization events during sporulation. Based on these measurements we developed mathematical population models to investigate how the degree of reversibility affects cellular decision-making. In particular, we evaluated the effect of reversibility on the 1) reliability in the progression to sporulation, and 2) adaptability under changing extracellular stress conditions. Results show that reversible progression allows cells to remain responsive to long-term environmental fluctuations. In contrast, the irreversible commitment point supports reliable execution of cell fate choice that is robust against short-term reductions in stress. This combination of opposite dynamic behaviors (reversible and irreversible) thus maximizes both adaptable and reliable decision-making over a broad range of changes in environmental conditions. These results suggest that decision-making systems might employ a general hybrid strategy to cope with unpredictably fluctuating environmental conditions
    corecore