114 research outputs found

    A MOS-based Dynamic Memetic Differential Evolution Algorithm for Continuous Optimization: A Scalability Test

    Get PDF
    Continuous optimization is one of the areas with more activity in the field of heuristic optimization. Many algorithms have been proposed and compared on several benchmarks of functions, with different performance depending on the problems. For this reason, the combination of different search strategies seems desirable to obtain the best performance of each of these approaches. This contribution explores the use of a hybrid memetic algorithm based on the multiple offspring framework. The proposed algorithm combines the explorative/exploitative strength of two heuristic search methods that separately obtain very competitive results. This algorithm has been tested with the benchmark problems and conditions defined for the special issue of the Soft Computing Journal on Scalability of Evolutionary Algorithms and other Metaheuristics for Large Scale Continuous Optimization Problems. The proposed algorithm obtained the best results compared with both its composing algorithms and a set of reference algorithms that were proposed for the special issue

    Data analytics and optimization for assessing a ride sharing system

    Get PDF
    Ride-sharing schemes attempt to reduce road traffic by matching prospective passengers to drivers with spare seats in their cars. To be successful, such schemes require a critical mass of drivers and passengers. In current deployed implementations, the possible matches are based on heuristics, rather than real route times or distances. In some cases, the heuristics propose infeasible matches; in others, feasible matches are omitted. Poor ride matching is likely to deter participants from using the system. We develop a constraint-based model for acceptable ride matches which incorporates route plans and time windows. Through data analytics on a history of advertised schedules and agreed shared trips, we infer parameters for this model that account for 90% of agreed trips. By applying the inferred model to the advertised schedules, we demonstrate that there is an imbalance between riders and passengers. We assess the potential benefits of persuading existing drivers to switch to becoming passengers if appropriate matches can be found, by solving the inferred model with and without switching. We demonstrate that flexible participation has the potential to reduce the number of unmatched participants by up to 80%

    Gestión de la tutoría telemática en educación a distancia

    Get PDF
    Este trabajo presenta una aplicación experimental de tutoría telemática mediante correo electrónico e Internet, realizada durante 1999 con los alumnos de la Primera Convocatoria del Curso Universitario de Postgrado en Educación a Distancia que se dictó en la República Argentina en la Universidad CAECE junto con la Fundación para el Desarrollo de los Estudios Cognitivos, FUNDEC. Se analiza esta experiencia pedagógico-didáctica, desarrollada durante la primera parte del Curso, entre abril y junio de 1999, con casi cien alumnos distribuidos en más de 2.800.000 km2, a la luz de las posibilidades de las herramientas informáticas utilizadas

    Revealing the CO Coverage Driven C-C Coupling Mechanism for Electrochemical CO<sub>2</sub> Reduction on Cu<sub>2</sub>O Nanocubes via Operando Raman Spectroscopy

    Get PDF
    Electrochemical reduction of carbon dioxide (CO2RR) is an attractive route to close the carbon cycle and potentially turn CO2 into valuable chemicals and fuels. However, the highly selective generation of multicarbon products remains a challenge, suffering from poor mechanistic understanding. Herein, we used operando Raman spectroscopy to track the potential-dependent reduction of Cu2O nanocubes and the surface coverage of reaction intermediates. In particular, we discovered that the potential-dependent intensity ratio of the Cu–CO stretching band to the CO rotation band follows a volcano trend similar to the CO2RR Faradaic efficiency for multicarbon products. By combining operando spectroscopic insights with Density Functional Theory, we proved that this ratio is determined by the CO coverage and that a direct correlation exists between the potential-dependent CO coverage, the preferred C–C coupling configuration, and the selectivity to C2+ products. Thus, operando Raman spectroscopy can serve as an effective method to quantify the coverage of surface intermediates during an electrocatalytic reaction

    The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization

    Get PDF
    During preimplantation development, contractile forces generated at the apical cortex segregate cells into inner and outer positions of the embryo, establishing the inner cell mass (ICM) and trophectoderm. To which extent these forces influence ICM-trophectoderm fate remains unresolved. Here, we found that the nuclear lamina is coupled to the cortex via an F-actin meshwork in mouse and human embryos. Actomyosin contractility increases during development, upregulating Lamin-A levels, but upon internalization cells lose their apical cortex and downregulate Lamin-A. Low Lamin-A shifts the localization of actin nucleators from nucleus to cytoplasm increasing cytoplasmic F-actin abundance. This results in stabilization of Amot, Yap phosphorylation and acquisition of ICM over trophectoderm fate. By contrast, in outer cells, Lamin-A levels increase with contractility. This prevents Yap phosphorylation enabling Cdx2 to specify the trophectoderm. Thus, forces transmitted to the nuclear lamina control actin organization to differentially regulate the factors specifying lineage identity

    Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution

    Get PDF
    The electrocatalytic reduction of carbon dioxide is widely studied for the sustainable production of fuels and chemicals. Metal ions in the electrolyte influence the reaction performance, although their main role is under discussion. Here we studied CO2 reduction on gold electrodes through cyclic voltammetry and showed that, without a metal cation, the reaction does not take place in a pure 1 mM H2SO4 electrolyte. We further investigated the CO2 reduction with and without metal cations in solution using scanning electrochemical microscopy in the surface-generation tip-collection mode with a platinum ultramicroelectrode as a CO and H2 sensor. CO is only produced on gold, silver or copper if a metal cation is added to the electrolyte. Density functional theory simulations confirmed that partially desolvated metal cations stabilize the CO2– intermediate via a short-range electrostatic interaction, which enables its reduction. Overall, our results redefine the reaction mechanism and provide definitive evidence that positively charged species from the electrolyte are key to stabilize the crucial reaction intermediate.Horizon 2020(H2020)722614-ELCORELCatalysis and Surface Chemistr

    Ultrasonic characterization of pork meat salting

    Full text link
    [EN] Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 ºC for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 ºC. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p<0.05) linear relationships were found between the ultrasonic velocity and the salt (R2=0.975) and moisture (R2=0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.García Pérez, JV.; Prados Pedraza, MD.; Pérez-Muelas Picón, MN.; Carcel Carrión, JA.; Benedito Fort, JJ. (2012). Ultrasonic characterization of pork meat salting. IOP: Materials Science and Engineering. 42:1-4. doi:10.1088/1757-899X/42/1/012043S144

    Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms

    Full text link
    [EN] We report zero-th and high-order acoustic Bessel beams with broad depth-of-field generated using acoustic holograms. While the transverse field distribution of Bessel beams generated using traditional passive methods is correctly described by a Bessel function, these methods present a common drawback: the axial distribution of the field is not constant, as required for ideal Bessel beams. In this work, we experimentally, numerically and theoretically report acoustic truncated Bessel beams of flat-intensity along their axis in the ultrasound regime using phase-only holograms. In particular, the beams present a uniform field distribution showing an elongated focal length of about 40 wavelengths, while the transverse width of the beam remains smaller than 0.7 wavelengths. The proposed acoustic holograms were compared with 3D-printed fraxicons, a blazed version of axicons. The performance of both phase-only holograms and fraxicons is studied and we found that both lenses produce Bessel beams in a wide range of frequencies. In addition, high-order Bessel beam were generated. We report first order Bessel beams that show a clear phase dislocation along their axis and a vortex with single topological charge. The proposed method may have potential applications in ultrasonic imaging, biomedical ultrasound and particle manipulation applications using passive lenses.This work was supported by the Spanish Ministry of Economy and Innovation (MINECO) through Project TEC2016-80976-R. NJ and SJ acknowledge financial support from Generalitat Valenciana through grants APOSTD/2017/042, ACIF/2017/045 and GV/2018/11. FC acknowledges financial support from Agencia Valenciana de la Innovacio through grant INNCON00/18/9 and European Regional Development Fund (IDIFEDER/2018/022).Jiménez-Gambín, S.; Jimenez, N.; Benlloch Baviera, JM.; Camarena Femenia, F. (2019). Generating Bessel beams with broad depth-of-field by using phase-only acoustic holograms. Scientific Reports. 9:1-13. https://doi.org/10.1038/s41598-019-56369-zS1139Durnin, J. Exact solutions for nondiffracting beams. i. the scalar theory. J. Opt. Soc. Am. A 4, 651 (1987).Durnin, J., Miceli, J. Jr & Eberly, J. Diffraction-free beams. Physical review letters 58, 1499 (1987).Chu, X. Analytical study on the self-healing property of Bessel beam. Eur. Phys. J. D 66, 259 (2012).McLeod, E., Hopkins, A. B. & Arnold, C. B. Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens. Opt. Lett. 31, 3155 (2006).Li, Z., Alici, K. B., Caglayan, H. & Ozbay, E. Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture. Phys. Rev. Lett. 102, 143901 (2009).Fahrbach, F. & Rohrbach, A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nat. Commun. 3, 632 (2011).Lu, J.-y, Zou, H. & Greenleaf, J. F. Biomedical ultrasound beam forming. Ultrasound in medicine & biology 20, 403–428 (1994).Marston, P. L. Scattering of a Bessel beam by a sphere. J. Acous. Soc. Am. 121, 753 (2007).Marston, P. L. Scattering of a Bessel beam by a sphere: Ii. helicoidal case and spherical shell example. The Journal of the Acoustical Society of America 124, 2905–2910 (2008).Lu, J. & Greenleaf, F. Ultrasonic nondiffracting transducer for medical imaging. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 37, 438 (1990).Lu, J.-Y. & Greenleaf, J. F. Pulse-echo imaging using a nondiffracting beam transducer. Ultrasound in medicine & biology 17, 265–281 (1991).Lu, J.-y, Song, T.-K., Kinnick, R. R. & Greenleaf, J. F. In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams. IEEE transactions on medical imaging 12, 819–829 (1993).Lu, J.-y, Xu, X.-L., Zou, H. & Greenleaf, J. F. Application of Bessel beam for doppler velocity estimation. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 42, 649–662 (1995).Nabavizadeh, A., Greenleaf, J. F., Fatemi, M. & Urban, M. W. Optimized shear wave generation using hybrid beamforming methods. Ultrasound in medicine & biology 40, 188–199 (2014).Marston, P. L. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. The Journal of the Acoustical Society of America 120, 3518–3524 (2006).Marston, P. L. Negative axial radiation forces on solid spheres and shells in a Bessel beam. The Journal of the Acoustical Society of America 122, 3162–3165 (2007).Marston, P. L. Radiation force of a helicoidal Bessel beam on a sphere. The Journal of the Acoustical Society of America 125, 3539–3547 (2009).Thomas, J.-L. & Marchiano, R. Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices. Physical review letters 91, 244302 (2003).Volke-Sepúlveda, K., Santillán, A. O. & Boullosa, R. R. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett. 100, 024302 (2008).Zhang, L. & Marston, P. L. Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres. Physical Review E 84, 035601 (2011).Courtney, C. R. et al. Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields. Applied Physics Letters 102, 123508 (2013).Hong, Z., Zhang, J. & Drinkwater, B. W. Observation of orbital angular momentum transfer from Bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett. 114, 214301 (2015).Baresch, D., Thomas, J.-L. &Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: Acoustical tweezers. Phys. Rev. Lett. 116 (2016).Marzo, A., Caleap, M. & Drinkwater, B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of mie particles. Phys. Rev. Lett. 120, 044301 (2018).Li, Y. et al. Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects. Applied Physics Letters 112, 254101 (2018).Riaud, A., Baudoin, M., Thomas, J.-L. & Matar, O. B. Cyclones and attractive streaming generated by acoustical vortices. Physical Review E 90, 013008 (2014).Shi, C., Dubois, M., Wang, Y. & Zhang, X. High-speed acoustic communication by multiplexing orbital angular momentum. Proceedings of the National Academy of Sciences 114, 7250–7253 (2017).Jiang, X., Liang, B., Cheng, J.-C. & Qiu, C.-W. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing. Advanced Materials 30, 1800257 (2018).Hsu, D., Margetan, F. & Thompson, D. O. Bessel beam ultrasonic transducer: fabrication method and experimental results. Appl. Phys. Lett. 55, 2066 (1989).Campbell, J. A. & Soloway, S. Generation of a nondiffracting beam with frequency-independent beamwidth. The Journal of the Acoustical Society of America 88, 2467–2477 (1990).Masuyama, H., Yokoyama, T., Nagai, K. & Mizutani, K. Generation of Bessel beam from equiamplitude-driven annular transducer array consisting of a few elements. Jpn. J. Appl. Phys. 38, 3080 (1999).Fjield, T., Fan, X. & Hynynen, K. A parametric study of the concentric-ring transducer design for mri guided ultrasound surgery. J. Acoust. Soc. Am. 100, 1220 (1996).Chillara, V. K., Pantea, C. & Sinha, D. N. Low-frequency ultrasonic Bessel-like collimated beam generation from radial modes of piezoelectric transducers. Applied Physics Letters 110, 064101 (2017).Burckhardt, C., Hoffmann, H. & Grandchamp, P.-A. Ultrasound axicon: A device for focusing over a large depth. The Journal of the Acoustical Society of America 54, 1628–1630 (1973).Foster, F., Patterson, M., Arditi, M. & Hunt, J. The conical scanner: a two transducer ultrasound scatter imaging technique. Ultrasonic imaging 3, 62–82 (1981).McLeod, J. H. The axicon: A new type of optical element. J. Opt. Soc. Am. 44, 592 (1954).Arlt, J. & Dholakia, K. Generation of high-order Bessel beams by use of an axicon. Optics Communications 177, 297–301 (2000).Golub, I. Fresnel axicon. Optics letters 31, 1890–1892 (2006).Lirette, R. & Mobley, J. Broadband wave packet dynamics of minimally diffractive ultrasonic fields from axicon and stepped fraxicon lenses. The Journal of the Acoustical Society of America 146, 103–108 (2019).Jiménez, N. et al. Acoustic Bessel-like beam formation by an axisymmetric grating. Europhys. Lett. 106, 24005 (2014).Xu, Z., Xu, W., Qian, M., Cheng, Q. & Liu, X. A flat acoustic lens to generate a Bessel-like beam. Ultrasonics 80, 66–71 (2017).Li, Y., Liang, B., Gu, Z.-M., Zou, X.-Y. & Cheng, J.-C. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Scientific Reports 3, 2546 (2013).Nye, J. & Berry, M. Dislocations in wave trains. Proc. R. Soc. London, Ser. A 336, 165–190 (1974).Jiménez, N. et al. Formation of high-order acoustic Bessel beams by spiral diffraction gratings. Physical Review E 94, 053004 (2016).Wang, T. et al. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Applied Physics Letters 109, 123506 (2016).Jia, Y.-R., Wei, Q., Wu, D.-J., Xu, Z. & Liu, X.-J. Generation of fractional acoustic vortex with a discrete archimedean spiral structure plate. Applied Physics Letters 112, 173501 (2018).Jiménez, N., Romero-Garca, V., Garca-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by fresnel-spiral zone plates. Applied Physics Letters 112, 204101 (2018).Baudoin, M. et al. Folding a focalized acoustical vortex on a flat holographic transducer: miniaturized selective acoustical tweezers. Science advances 5, eaav1967 (2019).Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F. & Volke-Sepúlveda, K. Acoustic analysis of a broadband spiral source for the simultaneous generation of multiple Bessel vortices in air. The Journal of the Acoustical Society of America 144, 3252–3261 (2018).Muelas-Hurtado, R. D., Ealo, J. L., Pazos-Ospina, J. F. & Volke-Sepúlveda, K. Generation of multiple vortex beam by means of active diffraction gratings. Applied Physics Letters 112, 084101 (2018).Wunenburger, R., Lozano, J. I. V. & Brasselet, E. Acoustic orbital angular momentum transfer to matter by chiral scattering. New Journal of Physics 17, 103022 (2015).Terzi, M., Tsysar, S., Yuldashev, P., Karzova, M. & Sapozhnikov, O. Generation of a vortex ultrasonic beam with a phase plate with an angular dependence of the thickness. Moscow University Physics Bulletin 72, 61–67 (2017).Hefner, B. T. & Marston, P. L. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. Jour. Acous. Soc. Am. 106, 3313–3316 (1999).Ealo, J. L., Prieto, J. C. & Seco, F. Airborne ultrasonic vortex generation using flexible ferroelectrets. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 58, 1651–1657 (2011).Naify, C. J. et al. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture. Applied Physics Letters 108, 223503 (2016).Ye, L. et al. Making sound vortices by metasurfaces. AIP Advances 6, 085007 (2016).Jiang, X., Li, Y., Liang, B., Cheng, J.-C. & Zhang, L. Convert acoustic resonances to orbital angular momentum. Physical review letters 117, 034301 (2016).Esfahlani, H., Lissek, H. & Mosig, J. R. Generation of acoustic helical wavefronts using metasurfaces. Physical Review B 95, 024312 (2017).Jiménez-Gambn, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. Physical Review Applied 12, 014016 (2019).Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M. & Aubry, J.-F. 3d-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology 63, 025026 (2018).Ferri, M. et al. On the evaluation of the suitability of the materials used to 3d print holographic acoustic lenses to correct transcranial focused ultrasound aberrations. Polymers 11, 1521 (2019).Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518 (2016).Brown, M. D., Cox, B. T. & Treeby, B. E. Design of multi-frequency acoustic kinoforms. Applied Physics Letters 111, 244101 (2017).Brown, M., Nikitichev, D., Treeby, B. & Cox, B. Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles. Applied Physics Letters 110, 094102 (2017).Zhu, Y. et al. Fine manipulation of sound via lossy metamaterials with independent and arbitrary reflection amplitude and phase. Nature communications 9, 1632 (2018).Brown, M. D. Phase and amplitude modulation with acoustic holograms. Applied Physics Letters 115, 053701 (2019).Jiménez, N., Romero-Garca, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B 95, 014205 (2017).Tsang, P. W. M. & Poon, T.-C. Novel method for converting digital fresnel hologram to phase-only hologram based on bidirectional error diffusion. Optics Express 21, 23680–23686 (2013).Soret, J. Ueber die durch kreisgitter erzeugten diffractionsphänomene. Annalen der Physik 232, 99–113 (1875).Turunen, J., Vasara, A. & Friberg, A. T. Holographic generation of diffraction-free beams. Applied Optics 27, 3959–3962 (1988).Vasara, A., Turunen, J. & Friberg, A. T. Realization of general nondiffracting beams with computer-generated holograms. JOSA A 6, 1748–1754 (1989).Cunningham, K. B. & Hamilton, M. F. Bessel beams of finite amplitude in absorbing fluids. J. Acous. Soc. Am. 108, 519 (2000).Ding, D. & Y. Lu, J. Higher-order harmonics of limited diffraction Bessel beams. J. Acous. Soc. Am. 107, 1212 (2000).Skeldon, K., Wilson, C., Edgar, M. & Padgett, M. An acoustic spanner and its associated rotational Doppler shift. New J. Phys. 10, 013018 (2008).Wu, J. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991).Zhang, L. & Marston, P. L. Angular momentum flux of nonparaxial acoustic vortex beams and torques on axisymmetric objects. Physical Review E 84, 065601 (2011).Yoon, C., Kang, B. J., Lee, C., Kim, H. H. & Shung, K. K. Multi-particle trapping and manipulation by a high-frequency array transducer. Appl. Phys. Lett. 105, 214103 (2014).Marzo, A. et al. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6 (2015).Blackstock, D. T. Fundamentals of physical acoustics (John Wiley & Sons, 2000).Treeby, B. E. & Cox, B. Modeling power law absorption and dispersion for acoustic propagation using the fractional laplacian. The Journal of the Acoustical Society of America 127, 2741–2748 (2010).Treeby, B. E., Jaros, J., Rendell, A. P. & Cox, B. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. The Journal of the Acoustical Society of America 131, 4324–4336 (2012).Jiménez, N. et al. Time-domain simulation of ultrasound propagation in a tissue-like medium based on the resolution of the nonlinear acoustic constitutive relations. Acta Acustica united with Acustica 102, 876–892 (2016)

    Characterization of pulmonary function in 10â18 year old patients with Duchenne muscular dystrophy

    Get PDF
    Pulmonary function loss in patients with Duchenne muscular dystrophy (DMD) is progressive and leads to pulmonary insufficiency. The purpose of this study in 10â18 year old patients with DMD is the assessment of the inter-correlation between pulmonary function tests (PFTs), their reliability and the association with the general disease stage measured by the Brooke score. Dynamic PFTs (peak expiratory flow [PEF], forced vital capacity [FVC], forced expiratory volume in one second [FEV1]) and maximum static airway pressures (MIP, MEP) were prospectively collected from 64 DMD patients enrolled in the DELOS trial (ClinicalTrials.gov, number NCT01027884). Baseline PEF percent predicted (PEF%p) was <80% and patients had stopped taking glucocorticoids at least 12 months prior to study start. At baseline PEF%p, FVC%p and FEV1%p correlated well with each other (Spearman's rho: PEF%pâFVC%p: 0.54; PEF%pâFEV1%p: 0.72; FVC%pâFEV1%p: 0.91). MIP%p and MEP%p correlated well with one another (MIP%pâMEP%p: 0.71) but less well with PEF%p (MIP%pâPEF%p: 0.40; MEP%pâPEF%p: 0.41) and slightly better with FVC%p (MIP%pâFVC%p: 0.59; MEP%pâFVC%p: 0.74). The within-subject coefficients of variation (CV) for successive measures were 6.97% for PEF%p, 6.69% for FVC%p and 11.11% for FEV1%p, indicating that these parameters could be more reliably assessed compared to maximum static airway pressures (CV for MIP%p: 18.00%; MEP%p: 15.73%). Yearly rates of PFT decline (placebo group) were larger in dynamic parameters (PEF%p: â8.9% [SD 2.0]; FVC%p: â8.7% [SD 1.1]; FEV1%p: â10.2% [SD 2.0]) than static airway pressures (MIP%p: â4.5 [SD 1.3]; MEP%p: â2.8 [SD 1.1]). A considerable drop in dynamic pulmonary function parameters was associated with loss of upper limb function (transition from Brooke score category 4 to category 5). In conclusion, these findings expand the understanding of the reliability, correlation and evolution of different pulmonary function measures in DMD patients who are in the pulmonary function decline phase

    Idebenone reduces respiratory complications in patients with Duchenne muscular dystrophy

    Get PDF
    In Duchenne muscular dystrophy (DMD), progressive loss of respiratory function leads to restrictive pulmonary disease and places patients at significant risk for severe respiratory complications. Of particular concern are ineffective cough, secretion retention and recurrent respiratory tract infections. In a Phase 3 randomized controlled study (DMD Long-term Idebenone Study, DELOS) in DMD patients 10–18 years of age and not taking concomitant glucocorticoid steroids, idebenone (900 mg/day) reduced significantly the loss of respiratory function over a 1-year study period. In a post-hoc analysis of DELOS we found that more patients in the placebo group compared to the idebenone group experienced bronchopulmonary adverse events (BAEs): placebo: 17 of 33 patients, 28 events; idebenone: 6 of 31 patients, 7 events. The hazard ratios (HR) calculated “by patient” (HR 0.33, p = 0.0187) and for “all BAEs” (HR 0.28, p = 0.0026) indicated a clear idebenone treatment effect. The overall duration of BAEs was 222 days (placebo) vs. 82 days (idebenone). In addition, there was also a difference in the use of systemic antibiotics utilized for the treatment of BAEs. In the placebo group, 13 patients (39.4%) reported 17 episodes of antibiotic use compared to 7 patients (22.6%) reporting 8 episodes of antibiotic use in the idebenone group. Furthermore, patients in the placebo group used systemic antibiotics for longer (105 days) compared to patients in the idebenone group (65 days). This post-hoc analysis of DELOS indicates that the protective effect of idebenone on respiratory function is associated with a reduced risk of bronchopulmonary complications and a reduced need for systemic antibiotics
    corecore