2,057 research outputs found

    Optimal tuning of a thermo-chemical equilibrium model for downdraft biomass gasifiers

    Get PDF
    A thermo-chemical equilibrium model is applied to predict the released syngas composition, char, tar content and temperature in biomass gasifiers. The accuracy of the model results is improved by proper calibration, namely by modifying the equilibrium constants through correction factors that represent the degree of approach of the analyzed system to equilibrium. To this aim, the developed model is coupled with a genetic algorithm (Moga II), to search for the optimal correction factors able to minimize the error between the computed and the experimentally measured product yields and temperatures. The approach is repeated to simulate the thermal treatment of different biomasses with increasing carbon content, from straw to sawdust. The possibility to resort to a unique set of correction factors for different biomasses is explored, that would allow the model being of particular interest for engineering applications, to trace the design guidelines for gasification systems

    Analysis of Temperature and Residence Time of the Exhausts in the Combustion Chamber of an Incinerator Plant

    Get PDF
    ABSTRACT The interest for energy recovery from waste incineration has increased over the years, in order to reduce the number of landfills and produce electricity and heat. At the same time, concern for the impact such processes have on the environment has also grown, and to reduce such an impact, new legislation is being enforced in Europe and Italy. In particular, important restrictions are imposed on the temperature of the exhausts in the combustion chamber, which must be kept above certain values for a given period of time, depending on the type of waste that is being incinerated. Such conditions can be rather difficult and certainly very expensive to monitor with acceptable accuracy. For this reason, in practical applications the temperature of the exhausts in the chamber is usually calculated through semi-empirical and approximate models that relate the temperatures in different sections of the chamber. In this work, the authors present a numerical approach for the analysis of such models that can be used to quantify the uncertainty on this type of measurement due to the common approximations used in full scale incineration plants. The analysis is based on the CFD simulation of the thermo-fluid-dynamic field in the combustion chamber of a full scale plant in Italy, whose results have verified based on a comparison with the data collected during an experimental campaign

    Electrodynamics of Josephson junctions containing strong ferromagnets

    Get PDF
    Triplet supercurrents in multilayer ferromagnetic Josephson junctions with misaligned magnetization can penetrate thicker ferromagnetic barriers compared to the singlet component. Although the static properties of these junctions have been extensively studied, the dynamic characteristics remain largely unexplored. Here we report a comprehensive electrodynamic characterization of multilayer ferromagnetic Josephson junctions composed of Co and Ho. By measuring the temperature-dependent current-voltage characteristics and the switching current distributions down to 0.3 K, we show that phase dynamics of junctions with triplet supercurrents exhibits long (in terms of proximity) junction behavior and moderately damped dynamics with renormalized capacitance and resistance. This unconventional behavior possibly provides a different way to dynamically detect triplets. Our results show new theoretical models are required to fully understand the phase dynamics of triplet Josephson junctions for applications in superconducting spintronics.DM, RC, FT would like to thank NANOCOHYBRI project (Cost Action CA 16218). NB acknowledges funding from the British Council through UKIERI programme and Loughborough University. MGB acknowledges funding from EPSRC Programme Grant EP/N017242/1

    A novel numerical modelling approach for keratoplasty eye procedure

    Get PDF
    Objective of the work is to investigate stress and deformation that conrneal tissue and donor graft undergo during endothelial keratoplasty. In order to attach the donor graft to the cornea, different air bubble pressure profiles acting on the graft are considered. This study is carried out by employing a three-dimensional nonlinear finite element methodology, combined with a contact algorithm. The ocular tissues are treated as isotropic, hyper-elastic and nearly-incompressible materials. The contact algorithm, based on the penalty-based node-to-surface approach, is used to model the donor graft-corneal interface region. First, the proposed computational methodology is tested against benchmark data for bending of the plates over a cylinder. Then, the influence of geometrical and material parameters of the graft on the corneal contact-structural response is investigated. The results are presented in terms of Von Mises stress intensity, displacement and mean contact force. Results clearly indicate that the air bubble pressure plays a key role in the corneal stress and strain, as well as graft stiffness and thickness

    Effectiveness of flow obstructions in enhancing electro-osmotic flow

    Get PDF
    In this paper the influence of obstructions on micro-channel electroosmotic flow is investigated for the first time. To carry out such a study, regular obstructions are introduced into micro-channels and flow rates are numerically calculated. The effect of channel width on flow rates is analysed on both free and obstructed channels. The solid material considered for channel walls and obstructions is silicon and the electrolyte is de-ionised water. The parameters studied include channel width, obstruction size and effective porosity of the channel. The effective porosity is varied between 0.4 and 0.8 depending on other chosen parameters. The results clearly demonstrate that, under the analysed conditions, introduction of obstructions into channels wider than100 micro meters enhances the flow rate induced by electro-osmosis

    Age, Metallicity and Star Formation History of Cluster Galaxies at z~0.3 F

    Get PDF
    We investigate the color-magnitude distribution in the rich cluster AC 118 at z=0.31. The sample is selected by the photometric redshift technique, allowing to study a wide range of properties of stellar populations, and is complete in the K-band, allowing to study these properties up to a given galaxy mass. We use galaxy templates based on population synthesis models to translate the physical properties of the stellar populations - formation epoch, time-scale of star formation, and metallicity - into observed magnitudes and colors. In this way we show that a sharp luminosity-metallicity relation is inferred without any assumption on the galaxy formation scenario (either monolithic or hierarchical). Our data exclude significant differences in star formation histories along the color-magnitude relation, and therefore confirm a pure metallicity interpretation for its origin, with an early (z~5) formation epoch for the bulk of stellar populations. The dispersion in the color-magnitude diagram implies that fainter galaxies in our sample (K~18) ceased to form stars as late as z~0.5, in agreement with the picture that these galaxies were recently accreted into the cluster environment. The trend with redshift of the total stellar mass shows that half of the luminous mass in AC 118 was already formed at $z~2, but also that 20% of the stars formed at z<1.Comment: 16 pages, 10 figures. ApJ in pres

    Analysing observed star cluster SEDs with evolutionary synthesis models: systematic uncertainties

    Get PDF
    The definitive version is available at www.blackwell-synergy.com. Copyright Blackwell Publishing DOI : 10.1111/j.1365-2966.2004.07197.xWe discuss the systematic uncertainties inherent to analyses of observed (broad-band) Spectral Energy Distributions (SEDs) of star clusters with evolutionary synthesis models. We investigate the effects caused by restricting oneself to a limited number of available passbands, choices of various passband combinations, finite observational errors, non-continuous model input parameter values, and restrictions in parameter space allowed during analysis. Starting from a complete set of UBVRIJH passbands (respectively their Hubble Space Telescope/WFPC2 equivalents) we investigate to which extent clusters with different combinations of age, metallicity, internal extinction and mass can or cannot be disentangled in the various evolutionary stages throughout their lifetimes and what are the most useful passbands required to resolve the ambi- guities. We find the U and B bands to be of the highest significance, while the V band and near-infrared data provide additional constraints. A code is presented that makes use of luminosities of a star cluster system in all of the possibly available passbands, and tries to find ranges of allowed age-metallicity-extinction-mass combinations for individual members of star cluster systems. Numerous tests and examples are pre- sented. We show the importance of good photometric accuracies and of determining the cluster parameters independently without any prior assumptions.Peer reviewe

    Hydrogen-based hybrid power unit for light vehicles: Assessment of energy performance and radiated electromagnetic emissions

    Get PDF
    Electrification of transport (electro-mobility) is considered an essential strategy to meet Europe’s climate and energy challenges. Nonetheless, within the future perspective of living in smart cities, the interaction between electromobility devices and the surrounding environment, including humans, needs to be further investigated. In this study, a new hybrid power unit is developed and equipped on a commercial electric bike. The energy performance of this prototype are analyzed together with its contribution to radiated electromagnetic emissions. The former analysis demonstrated the remarkable fuel efficiency shown by the new power unit, i.e., a 140km long distance can be covered at mean power, while the latter tests, undertaken within the reverberating chamber of the Universit`a degli Studi di Napoli “Parthenope”, demonstrated that the hydrogen bike prototype is compliant with the actual European Union regulations in terms of electromagnetic radiations, and that long-term effects of its radiations on humans are negligible

    Two Wide Planetary-Mass Companions to Solar-Type Stars in Upper Scorpius

    Get PDF
    At wide separations, planetary-mass and brown dwarf companions to solar type stars occupy a curious region of parameters space not obviously linked to binary star formation or solar-system scale planet formation. These companions provide insight into the extreme case of companion formation (either binary or planetary), and due to their relative ease of observation when compared to close companions, they offer a useful template for our expectations of more typical planets. We present the results from an adaptive optics imaging survey for wide (50-500 AU) companions to solar type stars in Upper Scorpius. We report one new discovery of a ~14 M_J companion around GSC 06214-00210, and confirm that the candidate planetary mass companion 1RXS J160929.1-210524 detected by Lafreniere et al (2008) is in fact co-moving with its primary star. In our survey, these two detections correspond to ~4% of solar type stars having companions in the 6-20 M_J mass and 200-500 AU separation range. This figure is higher than would be expected if brown dwarfs and planetary mass companions were drawn from an extrapolation of the binary mass function. Finally, we discuss implications for the formation of these objects.Comment: 11 Pages, 7 Figures, Accepted for Ap

    RF assisted switching in magnetic Josephson junctions

    Get PDF
    We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications
    corecore