2,634 research outputs found

    The effect of varying levels of vehicle automation on drivers’ lane changing behaviour

    Get PDF
    Much of the Human Factors research into vehicle automation has focused on driver responses to critical scenarios where a crash might occur. However, there is less knowledge about the effects of vehicle automation on drivers’ behaviour during non-critical take-over situations, such as driver-initiated lane-changing or overtaking. The current driving simulator study, conducted as part of the EC-funded AdaptIVe project, addresses this issue. It uses a within-subjects design to compare drivers’ lane-changing behaviour in conventional manual driving, partially automated driving (PAD) and conditionally automated driving (CAD). In PAD, drivers were required to re-take control from an automated driving system in order to overtake a slow moving vehicle, while in CAD, the driver used the indicator lever to initiate a system-performed overtaking manoeuvre. Results showed that while drivers’ acceptance of both the PAD and CAD systems was high, they generally preferred CAD. A comparison of overtaking positions showed that drivers initiated overtaking manoeuvres slightly later in PAD than in manual driving or CAD. In addition, when compared to conventional driving, drivers had higher deviations in lane positioning and speed, along with higher lateral accelerations during lane changes following PAD. These results indicate that even in situations which are not time-critical, drivers’ vehicle control after automation is degraded compared to conventional driving

    Were they in the loop during automated driving? Links between visual attention and crash potential

    Get PDF
    Background: A proposed advantage of vehicle automation is that it relieves drivers from the moment-to-moment demands of driving, to engage in other, non-driving related, tasks. However, it is important to gain an understanding of drivers’ capacity to resume manual control, should such a need arise. As automation removes vehicle control-based measures as a performance indicator, other metrics must be explored. Methods: This driving simulator study, conducted under the European Commission (EC) funded AdaptIVe project, assessed drivers’ gaze fixations during partially-automated (SAE Level 2) driving, on approach to critical and non-critical events. Using a between-participant design, 75 drivers experienced automation with one of five out-of-the-loop (OOTL) manipulations, which used different levels of screen visibility and secondary tasks to induce varying levels of engagement with the driving task: 1) no manipulation, 2) manipulation by light fog, 3) manipulation by heavy fog, 4) manipulation by heavy fog plus a visual task, 5) no manipulation plus an n-back task. Results: The OOTL manipulations influenced drivers’ first point of gaze fixation after they were asked to attend to an evolving event. Differences resolved within one second and visual attention allocation adapted with repeated events, yet crash outcome was not different between OOTL manipulation groups. Drivers who crashed in the first critical event showed an erratic pattern of eye fixations towards the road centre on approach to the event, while those who did not demonstrated a more stable pattern. Conclusions: Automated driving systems should be able to direct drivers’ attention to hazards no less than 6 seconds in advance of an adverse outcome

    Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection.

    Get PDF
    To restrict infection by Legionella pneumophila, mouse macrophages require Naip5, a member of the nucleotide-binding oligomerization domain leucine-rich repeat family of pattern recognition receptors, which detect cytoplasmic microbial products. We report that mouse macrophages restricted L. pneumophila replication and initiated a proinflammatory program of cell death when flagellin contaminated their cytosol. Nuclear condensation, membrane permeability, and interleukin-1beta secretion were triggered by type IV secretion-competent bacteria that encode flagellin. The macrophage response to L. pneumophila was independent of Toll-like receptor signaling but correlated with Naip5 function and required caspase 1 activity. The L. pneumophila type IV secretion system provided only pore-forming activity because listeriolysin O of Listeria monocytogenes could substitute for its contribution. Flagellin monomers appeared to trigger the macrophage response from perforated phagosomes: once heated to disassemble filaments, flagellin triggered cell death but native flagellar preparations did not. Flagellin made L. pneumophila vulnerable to innate immune mechanisms because Naip5+ macrophages restricted the growth of virulent microbes, but flagellin mutants replicated freely. Likewise, after intratracheal inoculation of Naip5+ mice, the yield of L. pneumophila in the lungs declined, whereas the burden of flagellin mutants increased. Accordingly, macrophages respond to cytosolic flagellin by a mechanism that requires Naip5 and caspase 1 to restrict bacterial replication and release proinflammatory cytokines that control L. pneumophila infection

    Avoiding spurious feedback loops in the reconstruction of gene regulatory networks with dynamic bayesian networks

    Get PDF
    Feedback loops and recurrent structures are essential to the regulation and stable control of complex biological systems. The application of dynamic as opposed to static Bayesian networks is promising in that, in principle, these feedback loops can be learned. However, we show that the widely applied BGe score is susceptible to learning spurious feedback loops, which are a consequence of non-linear regulation and autocorrelation in the data. We propose a non-linear generalisation of the BGe model, based on a mixture model, and demonstrate that this approach successfully represses spurious feedback loops

    When Should the Chicken Cross the Road? - Game Theory for Autonomous Vehicle - Human Interactions

    Get PDF
    Autonomous vehicle localization, mapping and planning in un-reactive environments are well-understood, but the human factors of complex interactions with other road users are not yet developed. This study presents an initial model for negotiation between an autonomous vehicle and another vehicle at an unsigned intersections or (equivalently) with a pedestrian at an unsigned road-crossing (jaywalking), using discrete sequential game theory. The model is intended as a basic framework for more realistic and data-driven future extensions. The model shows that when only vehicle position is used to signal intent, the optimal behaviors for both agents must include a non-zero probability of allowing a collision to occur. This suggests extensions to reduce this probability in future, such as other forms of signaling and control. Unlike most Game Theory applications in Economics, active vehicle control requires real-time selection from multiple equilibria with no history, and we present and argue for a novel solution concept, meta-strategy convergence, suited to this task

    Re-weighting of somatosensory inputs from the foot and the ankle for controlling posture during quiet standing following trunk extensor muscles fatigue

    Full text link
    The present study focused on the effects of trunk extensor muscles fatigue on postural control during quiet standing under different somatosensory conditions from the foot and the ankle. With this aim, 20 young healthy adults were asked to stand as immobile as possible in two conditions of No fatigue and Fatigue of trunk extensor muscles. In Experiment 1 (n = 10), somatosensation from the foot and the ankle was degraded by standing on a foam surface. In Experiment 2 (n = 10), somatosensation from the foot and ankle was facilitated through the increased cutaneous feedback at the foot and ankle provided by strips of athletic tape applied across both ankle joints. The centre of foot pressure displacements (CoP) were recorded using a force platform. The results showed that (1) trunk extensor muscles fatigue increased CoP displacements under normal somatosensatory conditions (Experiment 1 and Experiment 2), (2) this destabilizing effect was exacerbated when somatosensation from the foot and the ankle was degraded (Experiment 1), and (3) this destabilizing effect was mitigated when somatosensation from the foot and the ankle was facilitated (Experiment 2). Altogether, the present findings evidenced re-weighting of sensory cues for controlling posture during quiet standing following trunk extensor muscles fatigue by increasing the reliance on the somatosensory inputs from the foot and the ankle. This could have implications in clinical and rehabilitative areas

    Uniform random generation of large acyclic digraphs

    Full text link
    Directed acyclic graphs are the basic representation of the structure underlying Bayesian networks, which represent multivariate probability distributions. In many practical applications, such as the reverse engineering of gene regulatory networks, not only the estimation of model parameters but the reconstruction of the structure itself is of great interest. As well as for the assessment of different structure learning algorithms in simulation studies, a uniform sample from the space of directed acyclic graphs is required to evaluate the prevalence of certain structural features. Here we analyse how to sample acyclic digraphs uniformly at random through recursive enumeration, an approach previously thought too computationally involved. Based on complexity considerations, we discuss in particular how the enumeration directly provides an exact method, which avoids the convergence issues of the alternative Markov chain methods and is actually computationally much faster. The limiting behaviour of the distribution of acyclic digraphs then allows us to sample arbitrarily large graphs. Building on the ideas of recursive enumeration based sampling we also introduce a novel hybrid Markov chain with much faster convergence than current alternatives while still being easy to adapt to various restrictions. Finally we discuss how to include such restrictions in the combinatorial enumeration and the new hybrid Markov chain method for efficient uniform sampling of the corresponding graphs.Comment: 15 pages, 2 figures. To appear in Statistics and Computin

    Acceptance of Automated Road Transport Systems (ARTS): an adaptation of the UTAUT model

    Get PDF
    As research into innovative forms of automated transportation systems gains momentum, it is important that we develop an understanding of the factors that will impact the adoption of these systems. In an effort to address this issue, the European project CityMobil2 is collecting data around large-scale demonstrations of Automated Road Transport Systems (ARTS) in a number of cities across Europe. For these systems to be successful, user acceptance is vital. The current study used the Unified Theory of Acceptance and Use of Technology (UTAUT) to investigate the factors which might influence acceptance of ARTS vehicles, which were operational in two locations in Europe. The results indicate that the UTAUT constructs of performance expectancy, effort expectancy and social influence were all useful predictors of behavioural intentions to use ARTS, with performance expectancy having the strongest impact. However, it would appear that other factors are also needed in order for the model to strongly predict behavioural intentions in an automated transport context. Based on these findings, a number of implications for developers and ideas for future research are suggested

    Quantifying mercury isotope dynamics in captive Pacific Bluefin tuna (Thunnus orientalis)

    Get PDF
    Analyses of mercury (Hg) isotope ratios in fish tissues are used increasingly to infer sources and biogeochemical processes of Hg in natural aquatic ecosystems. Controlled experiments that can couple internal Hg isotope behavior with traditional isotope tracers (delta C-13, delta N-15) can improve the applicability of Hg isotopes as natural ecological tracers. In this study, we investigated changes in Hg isotope ratios (delta Hg-202, Delta Hg-199) during bioaccumulation of natural diets in the pelagic Pacific bluefin tuna (Thunnus orientalis; PBFT). Juvenile PBFT were fed a mixture of natural prey and a dietary supplement (60% Loligo opalescens, 31% Sardinops sagax, 9% gel supplement) in captivity for 2914 days, and white muscle tissues were analyzed for Hg isotope ratios and compared to time in captivity and internal turnover of delta C-13 and delta N-15. PBFT muscle tissues equilibrated to Hg isotope ratios of the dietary mixture within similar to 700 days, after which we observed a cessation in further shifts in Delta Hg-199, and small but significant negative delta Hg-202 shifts from the dietary mixture. The internal behavior of Delta Hg-199 is consistent with previous fish studies, which showed an absence of Delta Hg-199 fractionation during Hg bioaccumulation. The negative delta Hg-202 shifts can be attributed to either preferential excretion of Hg with higher delta Hg-202 values or individual variability in captive PBFT feeding preferences and/or consumption rates. The overall internal behavior of Hg isotopes is similar to that described for delta C-13 and delta N-15, though observed Hg turnover was slower compared to carbon and nitrogen. This improved understanding of internal dynamics of Hg isotopes in relation to delta C-13 and delta N-15 enhances the applicability of Hg isotope ratios in fish tissues for tracing Hg sources in natural ecosystems.118Nsciescopu
    corecore