104 research outputs found

    "Wet-to-Dry" Conformational Transition of Polymer Layers Grafted to Nanoparticles in Nanocomposite

    Get PDF
    The present communication reports the first direct measurement of the conformation of a polymer corona grafted around silica nano-particles dispersed inside a nanocomposite, a matrix of the same polymer. This measurement constitutes an experimental breakthrough based on a refined combination of chemical synthesis, which permits to match the contribution of the neutron silica signal inside the composite, and the use of complementary scattering methods SANS and SAXS to extract the grafted polymer layer form factor from the inter-particles silica structure factor. The modelization of the signal of the grafted polymer on nanoparticles inside the matrix and the direct comparison with the form factor of the same particles in solution show a clear-cut change of the polymer conformation from bulk to the nanocomposite: a transition from a stretched and swollen form in solution to a Gaussian conformation in the matrix followed with a compression of a factor two of the grafted corona. In the probed range, increasing the interactions between the grafted particles (by increasing the particle volume fraction) or between the grafted and the free matrix chains (decreasing the grafted-free chain length ratio) does not influence the amplitude of the grafted brush compression. This is the first direct observation of the wet-to-dry conformational transition theoretically expected to minimize the free energy of swelling of grafted chains in interaction with free matrix chains, illustrating the competition between the mixing entropy of grafted and free chains, and the elastic deformation of the grafted chains. In addition to the experimental validation of the theoretical prediction, this result constitutes a new insight for the nderstanding of the general problem of dispersion of nanoparticles inside a polymer matrix for the design of new nanocomposites materials

    Results and long-term patient satisfaction after gluteal augmentation with platelet-rich plasma-enriched autologous fat

    Get PDF
    BACKGROUND: Buttock augmentation is gaining increasing popularity in aesthetic surgery. The relatively high incidence of complications after silicone implant placement lead to the increased use of lipofilling techniques, yielding variable results with respect to graft take rate and long-term stability. Platelet-rich plasma (PRP) has been shown to have beneficial effects on wound healing and angiogenesis in the past. Therefore, we aimed at investigating the long-term results and patient satisfaction after PRP-enriched lipofilling for buttock augmentation. METHODS: Twenty-four bilateral gluteal augmentations with PRP-enriched autologous fat were performed. Additionally, contour shaping was achieved by liposuction of the adjacent zones. Post-operative results and complications were recorded, and satisfaction with buttock shape was estimated by a patient questionnaire. RESULTS: Mean follow-up time was 44 months, and mean amount of transferred fat was 481 cc for both sides. No seroma or hematoma formation, infection or liponecrosis were reported during the post-operative follow-up. Subjective patient satisfaction in general increased from preoperatively to 3 months postoperatively and declined only slightly in the long-term course. Satisfaction levels in general were specific for each patient. Patient recovery was quick, and the majority of patients returned to work within 10 days after surgery. CONCLUSIONS: PRP-enhanced lipofilling of the buttocks proved to be a safe procedure including a low complication rate and consistent results. However, subjective patient expectations have to be taken into account when choosing the indication. Further large volume studies are needed to elucidate the potential and benefit of PRP in this context. Level of Evidence: Level IV, therapeutic study

    Target electron ionization in Li2+-Li collisions: A multi-electron perspective

    Get PDF
    Target electron removal in Li2+-Li collisions at 2290 keV/amu is studied experimentally and theoretically for ground and excited lithium target configurations. It is shown that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. According to our calculations, the process is shown to be strongly single-particle like. On one hand, a high resemblance between theoretical single-particle ionization and exclusive inner-shell ionization is demonstrated, and contributions from multi-electron processes are found to be weak. On the other hand, it is indicated by the discrepancy between experimental and single-particle theoretical results that multi-electron processes involving ionization from the outer-shell may play a crucial role

    A Distinct Cytokine Profile and Stromal Vascular Fraction Metabolic Status without Significant Changes in the Lipid Composition Characterizes Lipedema

    Get PDF
    Lipedema is an adipose tissue disorder characterized by the disproportionate increase of subcutaneous fat tissue in the lower and/or upper extremities. The underlying pathomechanism remains unclear and no molecular biomarkers to distinguish the disease exist, leading to a large number of undiagnosed and misdiagnosed patients. To unravel the distinct molecular characteristic of lipedema we performed lipidomic analysis of the adipose tissue and serum of lipedema versus anatomically- and body mass index (BMI)-matched control patients. Both tissue groups showed no significant changes regarding lipid composition. As hyperplastic adipose tissue represents low-grade inflammation, the potential systemic effects on circulating cytokines were evaluated in lipedema and control patients using the Multiplex immunoassay system. Interestingly, increased systemic levels of interleukin 11 (p = 0.03), interleukin 28A (p = 0.04) and interleukin 29 (p = 0.04) were observed. As cytokines can influence metabolic activity, the metabolic phenotype of the stromal vascular fraction was examined, revealing significantly increased mitochondrial respiration in lipedema. In conclusion, despite sharing a comparable lipid profile with healthy adipose tissue, lipedema is characterized by a distinct systemic cytokine profile and metabolic activity of the stromal vascular fraction

    Increased levels of VEGF-C and macrophage infiltration in lipedema patients without changes in lymphatic vascular morphology

    Get PDF
    Lipedema is a chronic adipose tissue disorder characterized by the disproportional subcutaneous deposition of fat and is commonly misdiagnosed as lymphedema or obesity. The molecular determinants of the lipedema remain largely unknown and only speculations exist regarding the lymphatic system involvement. The aim of the present study is to characterize the lymphatic vascular involvement in established lipedema. The histological and molecular characterization was conducted on anatomically-matched skin and fat biopsies as well as serum samples from eleven lipedema and ten BMI-matched healthy patients. Increased systemic levels of vascular endothelial growth factor (VEGF)-C (P=0.02) were identified in the serum of lipedema patients. Surprisingly, despite the increased VEGF-C levels no morphological changes of the lymphatic vessels were observed. Importantly, expression analysis of lymphatic and blood vessel-related genes revealed a marked downregulation of Tie2 (P<0.0001) and FLT4 (VEGFR-3) (P=0.02) consistent with an increased macrophage infiltration (P=0.009), without changes in the expression of other lymphatic markers. Interestingly, a distinct local cytokine milieu, with decreased VEGF-A (P=0.04) and VEGF-D (P=0.02) expression was identified. No apparent lymphatic anomaly underlies lipedema, providing evidence for the different disease nature in comparison to lymphedema. The changes in the lymphatic-related cytokine milieu might be related to a modified vascular permeability developed secondarily to lipedema progression

    MicroRNA Dysregulation in the Spinal Cord following Traumatic Injury

    Get PDF
    Spinal cord injury (SCI) triggers a multitude of pathophysiological events that are tightly regulated by the expression levels of specific genes. Recent studies suggest that changes in gene expression following neural injury can result from the dysregulation of microRNAs, short non-coding RNA molecules that repress the translation of target mRNA. To understand the mechanisms underlying gene alterations following SCI, we analyzed the microRNA expression patterns at different time points following rat spinal cord injury

    Interleukin-6 receptor blockade in treatment-refractory MOG-IgG-associated disease and neuromyelitis optica spectrum disorders

    Get PDF
    BACKGROUND AND OBJECTIVES: To evaluate the long-term safety and efficacy of tocilizumab (TCZ), a humanized anti-interleukin-6 receptor antibody in myelin oligodendrocyte glycoprotein-IgG-associated disease (MOGAD) and neuromyelitis optica spectrum disorders (NMOSD). METHODS: Annualized relapse rate (ARR), Expanded Disability Status Scale score, MRI, autoantibody titers, pain, and adverse events were retrospectively evaluated in 57 patients with MOGAD (n = 14), aquaporin-4 (AQP4)-IgG seropositive (n = 36), and seronegative NMOSD (n = 7; 12%), switched to TCZ from previous immunotherapies, particularly rituximab. RESULTS: Patients received TCZ for 23.8 months (median; interquartile range 13.0-51.1 months), with an IV dose of 8.0 mg/kg (median; range 6-12 mg/kg) every 31.6 days (mean; range 26-44 days). For MOGAD, the median ARR decreased from 1.75 (range 0.5-5) to 0 (range 0-0.9; p = 0.0011) under TCZ. A similar effect was seen for AQP4-IgG+ (ARR reduction from 1.5 [range 0-5] to 0 [range 0-4.2]; p < 0.001) and for seronegative NMOSD (from 3.0 [range 1.0-3.0] to 0.2 [range 0-2.0]; p = 0.031). During TCZ, 60% of all patients were relapse free (79% for MOGAD, 56% for AQP4-IgG+, and 43% for seronegative NMOSD). Disability follow-up indicated stabilization. MRI inflammatory activity decreased in MOGAD (p = 0.04; for the brain) and in AQP4-IgG+ NMOSD (p < 0.001; for the spinal cord). Chronic pain was unchanged. Regarding only patients treated with TCZ for at least 12 months (n = 44), ARR reductions were confirmed, including the subgroups of MOGAD (n = 11) and AQP4-IgG+ patients (n = 28). Similarly, in the group of patients treated with TCZ for at least 12 months, 59% of them were relapse free, with 73% for MOGAD, 57% for AQP4-IgG+, and 40% for patients with seronegative NMOSD. No severe or unexpected safety signals were observed. Add-on therapy showed no advantage compared with TCZ monotherapy. DISCUSSION: This study provides Class III evidence that long-term TCZ therapy is safe and reduces relapse probability in MOGAD and AQP4-IgG+ NMOSD

    ATIII und NAC hemmen die mikrovaskuläre Thrombusbildung im postischämischen Gewebe in vivo

    No full text

    The hemi-hamate autograft arthroplasty in proximal interphalangeal joint reconstruction: a systematic review

    Full text link
    Palmar lip injuries of the proximal interphalangeal joint with dorsal fracture-dislocation are difficult to treat and often require major reconstruction. A systematic review was performed and yielded 177 articles. Thirteen articles on hemi-hamate autograft were included in full-text analysis. Results of 71 cases were summarized. Mean follow-up was 36 months and mean proximal interphalangeal joint range of motion was 77°. Overall complication rate was around 35%. Up to 50% of the patients showed radiographic signs of osteoarthritis. However, few of those patients complained about pain or impaired finger motion. Based on this systematic analysis and review, hemi-hamate autograft can be considered reliable for the reconstruction of acute and chronic proximal interphalangeal joint fracture-dislocations with joint involvement >50%, but longer-term follow-up studies are required to evaluate its outcome, especially regarding the rate of osteoarthritis. Level of Evidence: II
    corecore