88 research outputs found

    The effectiveness of two silicone dressings for sacral and heel pressure ulcer prevention compared with no dressings in high‐risk intensive care unit patients: a randomized controlled parallel‐group trial

    Get PDF
    Background There is a high incidence of pressure ulcers in high-risk settings such as intensive care. There is emerging evidence that the application of dressings to pressure ulcer predilection areas (sacrum and heels) improves prevention strategies. Objectives To determine whether preventive dressings, applied to the sacrum and heels of high-risk patients in intensive care units, in addition to standard prevention, reduces the incidence of pressure ulcers. Methods Between June 2015 and July 2018, a randomized, controlled, two-arm, superiority pragmatic study was performed with a concealed 1 : 1 allocation to the intervention and control group. Patients assigned to the intervention group had dressings applied to the sacrum and heels. Results In total, 7575 patients were screened for eligibility and 475 patients were included and allocated to both groups. Finally, 212 patients in the intervention group and 210 in the control group were analysed. The mean age was 63 center dot 5 years and the majority of patients were male (65 center dot 4%). The cumulative pressure ulcer incidence category II and above was 2 center dot 8% in the intervention, and 10 center dot 5% in the control group (P = 0 center dot 001). Compared with the control group, the relative risk in the intervention group was 0 center dot 26 [95% confidence interval (CI) 0 center dot 11-0 center dot 62] and the absolute risk reduction was 0 center dot 08 (95% CI 0 center dot 03-0 center dot 13). Conclusions The results indicate that the application of dressings, in addition to standard prevention, in high-risk intensive care unit patients is effective in preventing pressure ulcers at the heels and sacrum. What's already known about this topic? Pressure ulcers are severe soft tissue injuries and wounds, which occur worldwide in all healthcare settings. Despite preventive interventions, pressure ulcers still develop. There is emerging evidence that dressings help to prevent pressure ulcers. What does this study add? The incidence of pressure ulcers in intensive care units among high-risk patients remains high. The application of dressings to the sacrum and heels, in addition to standard preventive measures, reduces the relative and absolute risks for the development of pressure ulcers. The application of preventive dressings at the heels and sacrum seems to be feasible in intensive care settings

    The effect of probiotic and synbiotic supplementation on appetite-regulating hormones and desire to eat: a systematic review and meta-analysis of clinical trials

    Get PDF
    UNLABELLED: Recent studies have demonstrated the effect of probiotics, prebiotics, and synbiotics on adiponectin and leptin levels; however, those findings remain contested. The present study aimed to explore the impact of probiotics/synbiotics on appetite-regulating hormones and the desire to eat. METHODS: A systematic review was conducted by searching the Medline (PubMed) and Scopus databases from inception to December 2021, using relevant keywords and MeSH terms, and appropriate randomized controlled trials (RCTs) were extracted. The standardized mean differences (SMD) and 95% confidence intervals (95%CIs) were calculated as part of the meta-analysis using a random-effect model to determine the mean effect sizes. Analysis of Galbraith plots and the Cochrane Chi-squared test were conducted to examine heterogeneity. RESULTS: Meta-analysis of data from a total of 26 RCTs (n = 1536) showed a significant decrease in serum/plasma leptin concentration following probiotic/synbiotic supplementation (SMD: -0.38, 95%CI= -0.638, -0.124); P-value= 0.004; I(2)= 69.4%; P heterogeneity <0.001). The leptin level decrease from probiotic/synbiotic supplementation was higher in patients with NAFLD than those with overweight/obesity or type 2 diabetes mellitus/ metabolic syndrome/ prediabetes. Probiotic/synbiotic supplementation was associated with a trending increase in adiponectin levels, stronger in patients with type 2 diabetes mellitus, metabolic syndrome, and prediabetes (SMD: 0.25, 95%CI= 0.04, 0.46) ”g/mL; P-value=0.021; I(2)=16.8%; P heterogeneity= 0.30). Additionally, supplementation with probiotic/synbiotic was linked to a slight increase in desire to eat (SMD: 0.34, 95%CI= 0.03, 0.66) P-value = 0.030; I(2)=39.4%; P heterogeneity= 0.16). CONCLUSION: Our meta-analysis indicates a favorable impact of probiotic/synbiotic supplementation on regulating leptin and adiponectin secretion

    Genomic attributes of airway commensal bacteria and mucosa

    Get PDF
    Microbial communities at the airway mucosal barrier are conserved and highly ordered, in likelihood reflecting co-evolution with human host factors. Freed of selection to digest nutrients, the airway microbiome underpins cognate management of mucosal immunity and pathogen resistance. We show here the initial results of systematic culture and whole-genome sequencing of the thoracic airway bacteria, identifying 52 novel species amongst 126 organisms that constitute 75% of commensals typically present in heathy individuals. Clinically relevant genes encode antimicrobial synthesis, adhesion and biofilm formation, immune modulation, iron utilisation, nitrous oxide (NO) metabolism and sphingolipid signalling. Using whole-genome content we identify dysbiotic features that may influence asthma and chronic obstructive pulmonary disease. We match isolate gene content to transcripts and metabolites expressed late in airway epithelial differentiation, identifying pathways to sustain host interactions with microbiota. Our results provide a systematic basis for decrypting interactions between commensals, pathogens, and mucosa in lung diseases of global significance

    Structure–activity study of N-((trans)-4-(2-(7-cyano-3,4-dihydroisoquinolin-2(1H)-yl)ethyl)cyclohexyl)-1H-indole-2-carboxamide (SB269652), a bitopic ligand that acts as a negative allosteric modulator of the dopamine D2 receptor

    Get PDF
    We recently demonstrated that SB269652 (1) engages one protomer of a dopamine D2 receptor (D2R) dimer in a bitopic mode to allosterically inhibit the binding of dopamine at the other protomer. Herein, we investigate structural deter- minants for allostery, focusing on modifications to three moieties within 1. We find that orthosteric “head” groups with small 7-substituents were important to maintain the limited negative cooperativity of analogues of 1, and replacement of the tetrahydroisoquinoline head group with other D2R “privileged structures” generated orthosteric antagonists. Additionally, replacement of the cyclohexylene linker with polymethylene chains conferred linker length dependency in allosteric pharma- cology. We validated the importance of the indolic NH as a hydrogen bond donor moiety for maintaining allostery. Replacement of the indole ring with azaindole conferred a 30-fold increase in affinity while maintaining negative cooperativity. Combined, these results provide novel SAR insight for bitopic ligands that act as negative allosteric modulators of the D2R

    Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage

    Get PDF
    AIMS: Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult to estimate its significance due to the variety of other features known to influence HTN. In the present study, we used germ-free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN. METHODS AND RESULTS: Four-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was induced by subcutaneous infusion with angiotensin (Ang) II (1.44 mg/kg/d) and 1% NaCl in the drinking water; sham-treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more comparable between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis revealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory fecal short-chain fatty acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid-derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher for cells isolated from GF than conventionally raised mice. CONCLUSIONS: Microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice underscores the role of the microbiome in mediating inflammation in HTN. TRANSLATION PERSPECTIVE: To assess the potential of microbiota-targeted interventions to prevent organ damage in hypertension, an accurate quantification of microbial influence is necessary. We provide evidence that the development of hypertensive organ damage is dependent on colonization status and suggest that a healthy microbiota provides anti-hypertensive immune and metabolic signals to the host. In the absence of normal symbiotic host-microbiome interactions, hypertensive damage to the kidney in particular is exacerbated. We suggest that hypertensive patients experiencing perturbations to the microbiota, which are common in CVD, may be at a greater risk for target-organ damage than those with a healthy microbiome

    Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in severe COVID-19

    Get PDF
    The clinical course of the 2019 coronavirus disease (COVID-19) is variable and to a substantial degree still unpredictable, especially in persons who have neither been vaccinated nor recovered from previous infection. We hypothesized that disease progression and inflammatory responses were associated with alterations in the microbiome and metabolome. To test this, we integrated metagenome, metabolome, cytokine, and transcriptome profiles of longitudinally collected samples from hospitalized COVID-19 patients at the beginning of the pandemic (before vaccines or variants of concern) and non-infected controls, and leveraged detailed clinical information and post-hoc confounder analysis to identify robust within- and cross-omics associations. Severe COVID-19 was directly associated with a depletion of potentially beneficial intestinal microbes mainly belonging to Clostridiales, whereas oropharyngeal microbiota disturbance appeared to be mainly driven by antibiotic use. COVID-19 severity was also associated with enhanced plasma concentrations of kynurenine, and reduced levels of various other tryptophan metabolites, lysophosphatidylcholines, and secondary bile acids. Decreased abundance of Clostridiales potentially mediated the observed reduction in 5-hydroxytryptophan levels. Moreover, altered plasma levels of various tryptophan metabolites and lower abundances of Clostridiales explained significant increases in the production of IL-6, IFNγ and/or TNFα. Collectively, our study identifies correlated microbiome and metabolome alterations as a potential contributor to inflammatory dysregulation in severe COVID-19

    Self-association of 8-anilino-1-naphthalene-sulfonate Molecules: Spectroscopic Characterization and Application to the Investigation of Protein Folding

    No full text
    It was suggested long ago that the reason for the considerable increase of 8-anilino-1-naphthalene-sulfonate (8-ANS) fluorescence intensity upon the transition from aqueous to organic solvents is the dissociation of 8-ANS associates. To clarify this point the dependence of spectral properties of the dye on concentration and solvent composition was investigated by means of steady-state and time-resolved fluorescence spectroscopy. It was shown that the increase of 8-ANS concentration leads to the changes in the shape of absorption and fluorescence spectra of the dye, accompanied by the decrease in its fluorescence decay time values. Such changes were observed in aqueous and organic solvents for Mg2+- and NH+4-salts of 8-anilino-1-naphthalene-sulfonateic acid and reflect the existence of self-association of the dye molecules in both media. However, the decrease in fluorescence intensity induced by the self-association of the probe molecules is too small to explain weak fluorescence of 8-ANS in water. At the same time, it expounds the difference between the decay times of protein-embedded 8-ANS molecules upon interaction of this probe with native and molten globule proteins

    Use of Fluorescence Decay Times of 8-ans-protein Complexes to Study the Conformational Transitions in Proteins Which Unfold Through the Molten Globule State

    No full text
    The conformational transitions starting with the native protein, passing the molten globule state and finally approaching the unfolded state of proteins was investigated for bovine carbonic anhydrase B (BCAB) and human α-lactalbumin (α-HLA) by means of fluorescence decay time measurements of the dye 8-anilinonaphthalene-1-sulphonic acid (8-ANS). Stepwise denaturation was realized by using the denaturant guanidinium chloride (GdmCl). It was shown that 8-ANS bound with protein yields a double-exponential fluorescence decay, where both decay times considerably exceed the decay time of free 8-ANS in water. This finding reflects the hydrophobic environment of the dye molecules attached to the proteins. The fluorescence lifetime of the short-time component is affected by protein association and can be effectively quenched by acrylamide, indicating that 8-ANS molecules preferentially bind at the protein surface. The fluorescence lifetime of the long-time component is independent of the protein and acrylamide concentration and may be related to protein-embedded dye molecules. Changes of the long lifetime component upon GdmCl-induced denaturation and unfolding of BCAB and α-HLA correlate well with overall changes of the protein conformation. The transition from native protein to the molten globule state is accompanied by an increase of the number of protein-embedded 8-ANS molecules, while the number of dye molecules located at the protein surface decreases. For the transition from the molten globule to the unfolded state was the opposite behaviour observed

    The Azulene Framework as a Novel Bioisostere: Design of Potent Dopamine D4 Receptor Ligands Inducing Penile Erection

    No full text
    Blue makes it happen: The non-uniform charge distribution of the blue colored azulene framework is highly suitable for the bioisosteric replacement of bicyclic heteroarene moieties. Showing an analogous binding mode as heterocyclic dopamine D4 receptor-selective lead compounds, the induction of penile erection in rats over a greater range of doses indicates a putative advantage of the rationally developed azulene derivative 2 b over apomorphine
    • 

    corecore