247 research outputs found

    The thermal conductivity reduction in HgTe/CdTe superlattices

    Full text link
    The techniques used previously to calculate the three-fold thermal conductivity reduction due to phonon dispersion in GaAs/AlAs superlattices (SLs) are applied to HgTe/CdTe SLs. The reduction factor is approximately the same, indicating that this SL may be applicable both as a photodetector and a thermoelectric cooler.Comment: 5 pages, 2 figures; to be published in Journal of Applied Physic

    Effect of pressure on the Raman modes of antimony

    Full text link
    The effect of pressure on the zone-center optical phonon modes of antimony in the A7 structure has been investigated by Raman spectroscopy. The A_g and E_g frequencies exhibit a pronounced softening with increasing pressure, the effect being related to a gradual suppression of the Peierls-like distortion of the A7 phase relative to a cubic primitive lattice. Also, both Raman modes broaden significantly under pressure. Spectra taken at low temperature indicate that the broadening is at least partly caused by phonon-phonon interactions. We also report results of ab initio frozen-phonon calculations of the A_g and E_g mode frequencies. Presence of strong anharmonicity is clearly apparent in calculated total energy versus atom displacement relations. Pronounced nonlinearities in the force versus displacement relations are observed. Structural instabilities of the Sb-A7 phase are briefly addressed in the Appendix.Comment: 10 pages, 8 figure

    Raman spectra of MgB2 at high pressure and topological electronic transition

    Full text link
    Raman spectra of the MgB2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ~590 cm-1 related to the E2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas beyond this region the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ~ 5GPa exhibits a change in the slope as well as a "hysteresis" effect in the frequency vs. pressure behavior. These singularities in the E2g mode behavior under pressure support the suggestion that MgB2 may undergo a pressure-induced topological electronic transition.Comment: 2 figure

    Anthropogenic Noise Affects Behavior across Sensory Modalities

    Get PDF
    Many species are currently experiencing anthropogenically driven environmental changes. Among these changes, increasing noise levels are specifically a problem for species using acoustic signals (i.e., species relying on signals that use the same sensory modality as anthropogenic noise). Yet many species use other sensory modalities, such as visual and olfactory signals, to communicate. However, we have only little understanding of whether changes in the acoustic environment affect species that use sensory modalities other than acoustic signals. We studied the impact of anthropogenic noise on the common cuttlefish Sepia officinalis, which uses highly complex visual signals. We showed that cuttlefish adjusted their visual displays by changing their color more frequently during a playback of anthropogenic noise, compared with before and after the playback. Our results provide experimental evidence that anthropogenic noise has a marked effect on the behavior of species that are not reliant on acoustic communication. Thus, interference in one sensory channel, in this case the acoustic one, affects signaling in other sensory channels. By considering sensory channels in isolation, we risk overlooking the broader implications of environmental changes for the behavior of animals

    Thermal Stabilization of the HCP Phase in Titanium

    Full text link
    We have used a tight-binding model that is fit to first-principles electronic-structure calculations for titanium to calculate quasi-harmonic phonons and the Gibbs free energy of the hexagonal close-packed (hcp) and omega crystal structures. We show that the true zero-temperature ground-state is the omega structure, although this has never been observed experimentally at normal pressure, and that it is the entropy from the thermal population of phonon states which stabilizes the hcp structure at room temperature. We present the first completely theoretical prediction of the temperature- and pressure-dependence of the hcp-omega phase transformation and show that it is in good agreement with experiment. The quasi-harmonic approximation fails to adequately treat the bcc phase because the zero-temperature phonons of this structure are not all stable

    Disorder induced collapse of the electron phonon coupling in MgB2_{2} observed by Raman Spectroscopy

    Full text link
    The Raman spectrum of the superconductor MgB2_{2} has been measured as a function of the Tc of the film. A striking correlation is observed between the TcT_{c} onset and the frequency of the E2gE_{2g} mode. Analysis of the data with the McMillan formula provides clear experimental evidence for the collapse of the electron phonon coupling at the temperature predicted for the convergence of two superconducting gaps into one observable gap. This gives indirect evidence of the convergence of the two gaps and direct evidence of a transition to an isotropic state at 19 K. The value of the electron phonon coupling constant is found to be 1.22 for films with Tc_{c} 39K and 0.80 for films with Tc_{c}\leq19K.Comment: 5 pages, 4 figure

    On inelastic hydrogen atom collisions in stellar atmospheres

    Full text link
    The influence of inelastic hydrogen atom collisions on non-LTE spectral line formation has been, and remains to be, a significant source of uncertainty for stellar abundance analyses, due to the difficulty in obtaining accurate data for low-energy atomic collisions either experimentally or theoretically. For lack of a better alternative, the classical "Drawin formula" is often used. Over recent decades, our understanding of these collisions has improved markedly, predominantly through a number of detailed quantum mechanical calculations. In this paper, the Drawin formula is compared with the quantum mechanical calculations both in terms of the underlying physics and the resulting rate coefficients. It is shown that the Drawin formula does not contain the essential physics behind direct excitation by H atom collisions, the important physical mechanism being quantum mechanical in character. Quantitatively, the Drawin formula compares poorly with the results of the available quantum mechanical calculations, usually significantly overestimating the collision rates by amounts that vary markedly between transitions.Comment: 9 pages, 6 figures, accepted for A&

    Small Fermi energy and phonon anharmonicity in MgB_2 and related compounds

    Full text link
    The remarkable anharmonicity of the E_{2g} phonon in MgB_2 has been suggested in literature to play a primary role in its superconducting pairing. We investigate, by means of LDA calculations, the microscopic origin of such an anharmonicity in MgB_2, AlB_2, and in hole-doped graphite. We find that the anharmonic character of the E_{2g} phonon is essentially driven by the small Fermi energy of the sigma holes. We present a simple analytic model which allows us to understand in microscopic terms the role of the small Fermi energy and of the electronic structure. The relation between anharmonicity and nonadiabaticity is pointed out and discussed in relation to various materials.Comment: 5 pages, 2 figures replaced with final version, accepted on Physical Review

    Linear-response theory and lattice dynamics: a muffin-tin orbital approach

    Full text link
    A detailed description of a method for calculating static linear-response functions in the problem of lattice dynamics is presented. The method is based on density functional theory and it uses linear muffin-tin orbitals as a basis for representing first-order corrections to the one-electron wave functions. As an application we calculate phonon dispersions in Si and NbC and find good agreement with experiments.Comment: 18 pages, Revtex, 2 ps figures, uuencoded, gzip'ed, tar'ed fil

    Record Maximum Oscillation Frequency in C-face Epitaxial Graphene Transistors

    Full text link
    The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high frequency transistor studies, exemplifying the superior electronics potential of C-face epitaxial graphene. Careful transistor design using a high {\kappa} dielectric T-gate and self-aligned contacts, further contributed to the record-breaking fmax
    corecore