54 research outputs found

    Transepithelial Transport and Enzymatic Detoxification of Gluten in Gluten-Sensitive Rhesus Macaques

    Get PDF
    In a previous report, we characterized a condition of gluten sensitivity in juvenile rhesus macaques that is similar in many respects to the human condition of gluten sensitivity, celiac disease. This animal model of gluten sensitivity may therefore be useful toward studying both the pathogenesis and the treatment of celiac disease. Here, we perform two pilot experiments to demonstrate the potential utility of this model for studying intestinal permeability toward an immunotoxic gluten peptide and pharmacological detoxification of gluten in vivo by an oral enzyme drug candidate.Intestinal permeability was investigated in age-matched gluten-sensitive and control macaques by using mass spectrometry to detect and quantify an orally dosed, isotope labeled 33-mer gluten peptide delivered across the intestinal epithelium to the plasma. The protective effect of a therapeutically promising oral protease, EP-B2, was evaluated in a gluten-sensitive macaque by administering a daily gluten challenge with or without EP-B2 supplementation. ELISA-based antibody assays and blinded clinical evaluations of this macaque and of an age-matched control were conducted to assess responses to gluten.Labeled 33-mer peptide was detected in the plasma of a gluten-sensitive macaque, both in remission and during active disease, but not in the plasma of healthy controls. Administration of EP-B2, but not vehicle, prevented clinical relapse in response to a dietary gluten challenge. Unexpectedly, a marked increase in anti-gliadin (IgG and IgA) and anti-transglutaminase (IgG) antibodies was observed during the EP-B2 treatment phase.Gluten-sensitive rhesus macaques may be an attractive resource for investigating important aspects of celiac disease, including enhanced intestinal permeability and pharmacology of oral enzyme drug candidates. Orally dosed EP-B2 exerts a protective effect against ingested gluten. Limited data suggest that enhanced permeability of short gluten peptides generated by gastrically active glutenases may trigger an elevated antibody response, but that these antibodies are not necessarily causative of clinical illness

    Extracellular Transglutaminase 2 Is Catalytically Inactive, but Is Transiently Activated upon Tissue Injury

    Get PDF
    Transglutaminase 2 (TG2) is a multifunctional mammalian protein with transamidase and signaling properties. Using selective TG2 inhibitors and tagged nucleophilic amine substrates, we show that the majority of extracellular TG2 is inactive under normal physiological conditions in cell culture and in vivo. However, abundant TG2 activity was detected around the wound in a standard cultured fibroblast scratch assay. To demonstrate wounding-induced activation of TG2 in vivo, the toll-like receptor 3 ligand, polyinosinic-polycytidylic acid (poly(I:C)), was injected in mice to trigger small intestinal injury. Although no TG2 activity was detected in vehicle-treated mice, acute poly(I:C) injury resulted in rapid TG2 activation in the small intestinal mucosa. Our findings provide a new basis for understanding the role of TG2 in physiology and disease

    An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF
    We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets

    Spectrum of gluten-related disorders: consensus on new nomenclature and classification

    Get PDF
    A decade ago celiac disease was considered extremely rare outside Europe and, therefore, was almost completely ignored by health care professionals. In only 10 years, key milestones have moved celiac disease from obscurity into the popular spotlight worldwide. Now we are observing another interesting phenomenon that is generating great confusion among health care professionals. The number of individuals embracing a gluten-free diet (GFD) appears much higher than the projected number of celiac disease patients, fueling a global market of gluten-free products approaching $2.5 billion (US) in global sales in 2010. This trend is supported by the notion that, along with celiac disease, other conditions related to the ingestion of gluten have emerged as health care concerns. This review will summarize our current knowledge about the three main forms of gluten reactions: allergic (wheat allergy), autoimmune (celiac disease, dermatitis herpetiformis and gluten ataxia) and possibly immune-mediated (gluten sensitivity), and also outline pathogenic, clinical and epidemiological differences and propose new nomenclature and classifications

    Consensus Paper: Neuroimmune Mechanisms of Cerebellar Ataxias

    Full text link

    Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia

    No full text
    Objective: To investigate the presence of autoantibody deposition against type 2 tissue transglutaminase (TG2; a reliable marker of the whole spectrum of gluten sensitivity) in the jejunal tissue and brain of patients with gluten ataxia and in control subjects. Methods: The authors evaluated jejunal biopsy samples from nine patients with gluten ataxia and seven patients with other causes of ataxia for the presence of TG2-related immunoglobulin deposits using double-color immunofluorescence. Autopsy brain tissue from one patient with gluten ataxia and one neurologically intact brain were also studied. Results: IgA deposition on jejunal TG2 was found in the jejunal tissue of all patients with gluten ataxia and in none of the controls. The intestinal IgA deposition pattern was similar to that seen in patients with overt and latent celiac disease and in those with dermatitis herpetiformis. Widespread IgA deposition around vessels was found in the brain of the patient with gluten ataxia but not the control brain. The deposition was most pronounced in the cerebellum, pons, and medulla. Conclusions: Anti-tissue transglutaminase IgA antibodies are present in the gut and brain of patients with gluten ataxia with or without an enteropathy in a similar fashion to patients with celiac disease, latent celiac disease, and dermatitis herpetiformis but not in ataxia control subjects. This finding strengthens the contention that gluten ataxia is immune mediated and belongs to the same spectrum of gluten sensitivity as celiac disease and dermatitis herpetiformis

    Elevation of IgG antibodies against tissue transglutaminase as a diagnostic tool for coeliac disease in selective IgA deficiency

    No full text
    Background: IgA serum autoantibodies against tissue transglutaminase (tTG) have an established diagnostic value in coeliac disease, and high efficacy tests are widely available for their detection. However, serological evaluation of IgA deficient subjects is still difficult. Aims: To evaluate the diagnostic potential of IgG class anti-tTG autoantibodies measured quantitatively using an enzyme linked immunosorbent assay (ELISA) compared with immunofluorescent detection of coeliac autoantibodies. Patients: We tested serum samples from 325 IgA deficient subjects, including 78 patients with coeliac disease, 73 disease controls, and 174 blood donors. Methods: IgG antibodies against human recombinant tTG were measured with an ELISA. IgG antiendomysium antibodies (EMA) were assayed by indirect immunofluorescence on human jejunum and appendix sections. Results: The IgG anti-tTG ELISA had a sensitivity of 98.7% and a specificity of 98.6%, and the correlation with IgG EMA titres was high (r(s)=0.91). One coeliac patient, initially negative in all autoantibody tests, displayed both IgG anti-tTG antibodies and IgG EMA during later gluten exposure. IgG anti-tTG antibodies and EMA titres showed significant decreases (p<0.001) in treated patients. The frequency of IgG anti-tTG autoantibody positivity was 9.8% among IgA deficient blood donors and 11 of the 12 positive subjects with known HLA-DQ haplotypes carried DQ2 or DQ8 alleles. Conclusions: IgG anti-tTG and IgG EMA autoantibody tests are highly efficient in detecting coeliac disease in IgA deficient patients. The high prevalence of coeliac antibodies among symptom free IgA deficient blood donors who also carry coeliac-type HLA-DQ genes indicates that all IgA deficient persons should be evaluated for coeliac disease
    corecore