141 research outputs found

    Insights into neutralization of animal viruses gained from study of influenza virus

    Get PDF
    It has long been known that the binding of antibodies to viruses can result in a loss of infectivity, or neutralization, but little is understood of the mechanism or mechanisms of this process. This is probably because neutralization is a multifactorial phenomenon depending upon the nature of the virus itself, the particular antigenic site involved, the isotype of immunoglobulin and the ratio of virus to immunoglobulin (see below). Thus not only is it likely that neutralization of one virus will differ from another but that changing the circumstances of neutralization can change the mechanism itself. To give coherence to the topic we are concentrating this review on one virus, influenza type A which is itself well studied and reasonably well understood [1–3]. Reviews of the older literature can be found in references 4 to 7

    Testing an Emerging Paradigm in Migration Ecology Shows Surprising Differences in Efficiency between Flight Modes

    Get PDF
    To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors

    Erytrocyte membrane anionic charge in type 2 diabetic patients with retinopathy

    Get PDF
    BACKGROUND: The Steno hypothesis states that changes in basement membrane anionic charge leads to diabetic microvascular complications. In diabetic nephropathy, loss of basement membrane glycosaminoglycans and the association between glomerular basement membrane heparan sulphate and proteinuria has been documented. A correlation between erythrocyte surface and the glomerular capillary wall charges has also been observed. The aim of this study is to evaluate the relationship between retinopathy and erythrocyte anionic charge and urinary glycosaminoglycan excretion in type 2 diabetic patients. METHODS: 49 subjects (58 ± 7 yrs, M/F 27/22) with type 2 diabetes with proliferative retinopathy (n = 13), nonproliferative retinopathy (n = 13) and without retinopathy (n = 23) were included in the study. 38 healthy subjects were selected as control group (57 ± 5 yrs, M/F 19/19). Erythrocyte anionic charge (EAC) was determined by the binding of the cationic dye, alcian blue. Urinary glycosaminoglycan and microalbumin excretion were measured. RESULTS: EAC was significantly decreased in diabetic patients with retinopathy (255 ± 30 ng alcian blue/10(6 )RBC, 312 ± 30 ng alcian blue/10(6 )RBC for diabetic and control groups respectively, p < 0.001). We did not observe an association between urinary GAG and microalbumin excretion and diabetic retinopathy. EAC is found to be negatively corralated with microalbuminuria in all groups. CONCLUSIONS: We conclude that type 2 diabetic patients with low erythrocyte anionic charge are associated with diabetic retinopathy. Reduction of negative charge of basement membranes may indicate general changes in microvasculature rather than retinopathy. More prospective and large studies needs to clarify the role of glycosaminoglycans on progression of retinopathy in type 2 diabetic patients

    Regulation of Pathologic Retinal Angiogenesis in Mice and Inhibition of VEGF-VEGFR2 Binding by Soluble Heparan Sulfate

    Get PDF
    Development of the retinal vascular network is strictly confined within the neuronal retina, allowing the intraocular media to be optically transparent. However, in retinal ischemia, pro-angiogenic factors (including vascular endothelial growth factor-A, VEGF-A) induce aberrant guidance of retinal vessels into the vitreous. Here, we show that the soluble heparan sulfate level in murine intraocular fluid is high particularly during ocular development. When the eyes of young mice with retinal ischemia were treated with heparan sulfate-degrading enzyme, the subsequent aberrant angiogenesis was greatly enhanced compared to PBS-injected contralateral eyes; however, increased angiogenesis was completely antagonized by simultaneous injection of heparin. Intraocular injection of heparan sulfate or heparin alone in these eyes resulted in reduced neovascularization. In cell cultures, the porcine ocular fluid suppressed the dose-dependent proliferation of human umbilical vein endothelial cells (HUVECs) mediated by VEGF-A. Ocular fluid and heparin also inhibited the migration and tube formation by these cells. The binding of VEGF-A and HUVECs was reduced under a high concentration of heparin or ocular fluid compared to lower concentrations of heparin. In vitro assays demonstrated that the ocular fluid or soluble heparan sulfate or heparin inhibited the binding of VEGF-A and immobilized heparin or VEGF receptor 2 but not VEGF receptor 1. The recognition that the high concentration of soluble heparan sulfate in the ocular fluid allows it to serve as an endogenous inhibitor of aberrant retinal vascular growth provides a platform for modulating heparan sulfate/heparin levels to regulate angiogenesis

    Logging Affects Fledgling Sex Ratios and Baseline Corticosterone in a Forest Songbird

    Get PDF
    Silviculture (logging) creates a disturbance to forested environments. The degree to which forests are modified depends on the logging prescription and forest stand characteristics. In this study we compared the effects of two methods of group-selection (“moderate” and “heavy”) silviculture (GSS) and undisturbed reference stands on stress and offspring sex ratios of a forest interior species, the Ovenbird (Seiurus aurocapilla), in Algonquin Provincial Park, Canada. Blood samples were taken from nestlings for corticosterone and molecular sexing. We found that logging creates a disturbance that is stressful for nestling Ovenbirds, as illustrated by elevated baseline corticosterone in cut sites. Ovenbirds nesting in undisturbed reference forest produce fewer male offspring per brood (proportion male = 30%) while logging with progressively greater forest disturbance, shifted the offspring sex ratio towards males (proportion male: moderate = 50%, heavy = 70%). If Ovenbirds in undisturbed forests usually produce female-biased broods, then the production of males as a result of logging may disrupt population viability. We recommend a broad examination of nestling sex ratios in response to anthropogenic disturbance to determine the generality of our findings

    The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cationic antimicrobial peptides (CAPs) with antitumor activity constitute a promising group of novel anticancer agents. These peptides induce lysis of cancer cells through interactions with the plasma membrane. It is not known which cancer cell membrane components influence their susceptibility to CAPs. We have previously shown that CAPs interact with the two glycosaminoglycans (GAGs), heparan sulfate (HS) and chondroitin sulfate (CS), which are present on the surface of most cells. The purpose of this study was to investigate the role of the two GAGs in the cytotoxic activity of CAPs.</p> <p>Methods</p> <p>Various cell lines, expressing different levels of cell surface GAGs, were exposed to bovine lactoferricin (LfcinB) and the designer peptide, KW5. The cytotoxic effect of the peptides was investigated by use of the colorimetric MTT viability assay. The cytotoxic effect on wild type CHO cells, expressing normal amounts of GAGs on the cell surface, and the mutant pgsA-745, that has no expression of GAGs on the cell surface, was also investigated.</p> <p>Results</p> <p>We show that cells not expressing HS were more susceptible to CAPs than cells expressing HS at the cell surface. Further, exogenously added heparin inhibited the cytotoxic effect of the peptides. Chondroitin sulfate had no effect on the cytotoxic activity of KW5 and only minor effects on LfcinB cytotoxicity.</p> <p>Conclusion</p> <p>Our results show for the first time that negatively charged molecules at the surface of cancer cells inhibit the cytotoxic activity of CAPs. Our results indicate that HS at the surface of cancer cells sequesters CAPs away from the phospholipid bilayer and thereby impede their ability to induce cytolysis.</p

    The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth

    Get PDF
    Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeleto ns. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology

    Membrane-Associated Heparan Sulfate Proteoglycan Is a Receptor for Adeno-Associated Virus Type 2 Virions

    Get PDF
    The human parvovirus adeno-associated virus (AAV) infects a broad range of cell types, including human, nonhuman primate, canine, murine, and avian. Although little is known about the initial events of virus infection, AAV is currently being developed as a vector for human gene therapy. Using defined mutant CHO cell lines and standard biochemical assays, we demonstrate that heparan sulfate proteoglycans mediate both AAV attachment to and infection of target cells. Competition experiments using heparin, a soluble receptor analog, demonstrated dose-dependent inhibition of AAV attachment and infection. Enzymatic removal of heparan but not chondroitin sulfate moieties from the cell surface greatly reduced AAV attachment and infectivity. Finally, mutant cell lines that do not produce heparan sulfate proteoglycans were significantly impaired for both AAV binding and infection. This is the first report that proteoglycan has a role in cellular attachment of a parvovirus. Together, these results demonstrate that membrane-associated heparan sulfate proteoglycan serves as the viral receptor for AAV type 2, and provide an explanation for the broad host range of AAV. Identification of heparan sulfate proteoglycan as a viral receptor should facilitate development of new reagents for virus purification and provide critical information on the use of AAV as a gene therapy vector
    corecore