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Abstract

Bone tissue is mineralized dense connective tissue consisting mainly of a mineral compo-
nent (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous
proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to
hydroxyapatite which would protect these molecules from the destructive effects of temper-
ature and chemical agents after death. DNA and proteins have been successfully extracted
from archaeological skeletons from which valuable information has been obtained; how-
ever, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in
archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis,
homeostasis and degenerative bone disease. The ability to isolate and characterize PG
and GAG content from archaeological skeletons would unveil valuable paleontological infor-
mation. We therefore optimized methods for the extraction of both PGs and GAGs from
archaeological human skeletons. PGs and GAGs were successfully extracted from both
archaeological human bones and teeth, and characterized by their electrophoretic mobility
in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated
were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected.
The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodu-
lin) and glypican was analyzed in archaeological human bone slices. Staining patterns were
different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern
to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeo-
logical bones and teeth opens novel venues for the field of Paleontology.
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Introduction

Bone tissue is mineralized dense connective tissue that consists mainly of a mineral component
(hydroxyapatite) and an organic matrix. The organic matrix is comprised mainly of collagen
types I and III, non-collagenous proteins such as fibronectin, osteocalcin, osteopontin, osteo-
nectin and bone sialoprotein II, and proteoglycans (PGs) such as decorin and biglycan [1,2].
Extracellular matrix (ECM) proteins bind very tightly to hydroxyapatite which protects these
proteins from the destructive effects of temperature and chemical agents after death [3]. PGs
and their constituent glycosaminoglycan (GAG) chains also bind to hydroxyapatite [4,5],
which could also potentially protect these molecules from degradation. ECM proteins, such as
collagen type I and osteonectin, have been successfully extracted from archaeological skeletons
[3,6,7], and hexosamine has been identified in fossilized cartilage [8]; however, there is a lack
of research concerning PGs and GAG chains in archaeological bones and teeth, even though
these molecules play a major role in bone morphogenesis, homeostasis and degenerative bone
disease [9,10].

PGs are macromolecules comprised of one or more GAG chains covalently bound to a pro-
tein core [11]. GAGs are linear polysaccharides composed of repeating disaccharide units
which consist of a hexosamine and either hexuronic acid or galactose units, and may be sul-
fated in various positions. The strategic variability in sulfate substitution results in considerable
sequence heterogeneity which conveys the plethora of biological roles GAGs play in cell-cell
and cell-matrix interactions. GAGs are classified into six groups: chondroitin 4- and 6-sulfate
(C4S, C6S), keratan sulfate (KS), hyaluronic acid (HA), dermatan sulfate (DS), heparin and
heparan sulfate (HS).

Small Leucine Rich Proteoglycans (SLRPs) are an important family of PGs described in
bones. SLRPs are localized in most skeletal regions and play a major role during all phases of
bone formation, including cell proliferation, organic matrix deposition, remodeling, and min-
eral deposition. Biglycan and decorin are two such SLRPs described in bones, which have CS/
DS GAG substitutions. Decorin expression begins at early bone matrix deposition, whilst bigly-
can is expressed during cell proliferation, ceases to be expressed during the period of bone
matrix deposition, and is once again expressed during mineralization [12]. Fibromodulin,
lumican, keratocan, proline/arginine-rich end leucine-rich repeat protein (PRELP), osteoad-
herin and osteoglycin/mimecan are SLRPs described in bone that may have KS chains or poly-
lactosamine side chains. Lumican and osteoglycin/mimecan have been described in avian
medullary bone [13]. Lumican has also been shown to be secreted by differentiating and
mature murine osteoblasts [14]. Osteoadherin has been described in bovine mineralized bone
matrix and is secreted by osteoblasts [15]. PRELP has been described in conjunctive tissue and
impairs osteoclastogenesis and bone resorption [16]. Fibromodulin has been shown to be
expressed in murine chondrocytes and osteoblasts during endochondral and intramembranous
ossification [17]. Keratocan is expressed by osteoblasts modulating osteoblast function, and
keratocan knockout mice have decreased rates of bone formation and mineral deposition [18].
In teeth, biglycan, decorin, fibromodulin and lumican are the predominant PGs of predentin
and dentin and play a role in dentinogenesis [19]. In addition, biglycan, decorin, fibromodulin
and lumican have been described in cementum [20,21].

SLRPs regulate collagen fibrillogenesis via their bi-functional character; the protein
moiety interacts with the collagen fibrils and the GAG chains regulate interfibrillar distances
[22,23,24,25,26]. In addition, SLRP binding to collagen has been shown to enhance collagen
fibril stability [27,28] and to protect collagen fibrils from proteolytic cleavage by various colla-
genases [29]. SLRPs also bind growth factors; for example, biglycan, decorin and fibromodulin
bind TGF-p in the extracellular matrix [30].
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Given the vital role SLRPs and GAGs play in bone morphogenesis and homeostasis, alter-
ations in their expression profile or their loss due to unregulated proteolysis leads to a plethora
of diseases. The expression of PGs and GAGs is altered in various bone related diseases, includ-
ing osteoarthritis of the temporomandibular joint [31], osteochondromas and peripheral chon-
drosarcomas [32], and due to this, these molecules can be used as biological markers.

This is the first time to our knowledge that PGs and GAGs have been analyzed in archaeo-
logical human bones and teeth. Initially, methods were optimized for the extraction of PGs and
GAGs from archaeological human bones and teeth. Following extraction, the PGs and GAGs
were characterized, and subsequently immunolocalized in archaeological human bone slices.
The analysis of PGs and GAGs in archaeological skeletons is novel and could prove to be
extremely useful in the fields of Paleontology and Forensic Science.

Materials and Methods
Samples

The bones and teeth used in this study were provided by the University of Lincoln, Lincoln,
UK. Sixty-eight partial or complete skeletal remains were excavated in the last decade from a
site on the south side of Monk’s Road, Lincoln (Ref. SK980714). The site was determined to be
the extramural graveyard of the defunct parish of St Peter at Welles (ad fontem). The age of the
site was estimated to 1150-1400 AD. The samples used in this study were from various types of
archaeological human bone (femur, humerus, radius, tibia and ulna), identified as juvenile,
adolescent or adult, and teeth, which are numbered from 1 to 32 and stored in the repository
labeled LMK 03 076 in the secure laboratories of the School of Life Sciences, University of Lin-
coln, Brayford Pool LN6 7TS, UK.

Ethics statement

All necessary permits were obtained for the described study, which complied with all relevant
regulations. The appropriate Coroners license was obtained to excavate the skeletons and the
research was approved by the University of Lincoln ethics committee in the UK and CEP/UNI-
FESP in Brazil (CAAE: 07934412.2.0000.5505).

Bone and tooth preparation

The bones and teeth were initially cleaned in water and allowed to dry. In addition, bone sam-
ples were mechanically cleaned with autoclaved sandpaper. Subsequently, the bone and tooth
samples were exposed to sodium hypochlorite for 15 min at room temperature. Bone powder
and tooth powder were collected using a drill (Draper) with drill bits that had been previously
exposed to sodium hypochlorite and autoclaved. The bone powder and tooth powder were
stored at -20°C until processed. Face masks, gloves and clean laboratory coats were used when
handling the skeletal material and carrying out procedures.

Proteoglycan extraction

Bone and tooth powders were obtained as described above and suspended in 4 M guanidine-
HCI, 20 mM NaH,PO,, 30 mM Na,HPO,, 300 mM EDTA, pH 7.4 (containing complete pro-
teinase inhibitor cocktail, Roche, Basel, Switzerland) (25-100 mg/4.5 mL) and maintained
under constant rotation at 4°C for 24 hours. Following the incubation period, double the vol-
ume was added of 7 M urea, 0.3 M NaCl, 0.05 M CH;COONa, pH 6.5 (containing complete
proteinase inhibitor cocktail, Roche). The solution was then maintained under constant rota-
tion at 4°C for an additional 24 hours, filtered through a Poly-Prep Chromatography Column
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(Bio-Rad, Hercules, CA), concentrated and desalinized using an Amicon Ultra-15 centrifugal
filter device (Millipore, County Cork, Ireland) and vacuum dried. The crude protein/PG extract
was then suspended (1 pg/uL) in MilliQ water containing complete proteinase inhibitor cock-
tail (Roche) and the PGs analyzed by agarose gel electrophoresis.

Glycosaminoglycan extraction

GAGs were extracted according to a previously described method [33] with a few modifica-
tions. Bone and tooth powders were obtained as described above and suspended (25-50 mg/
mL) in solution containing the proteolytic enzyme maxatase (Biocon Laboratories, Sio Paulo,
Brazil) (4 mg/mL) in 0.05 M Tris-HCI buffer, pH 8.0, containing 1 M NaCl and incubated at
60°C for 2 days. A 1:10 volume of trichloroacetic acid was added and the samples kept on ice
for 15 min. The samples were then centrifuged (15 min, 2250 g), the supernatant collected and
the GAGs precipitated by slowly adding 2 volumes of methanol whilst vortexing and maintain-
ing at -20°C overnight followed by centrifugation (10 min, 2250 g). The pellet was dried and
suspended in MilliQ water (1 pug/pL).

Agarose gel electrophoresis

PGs and GAGs were analyzed by 0.6% agarose gel electrophoresis in 0.05 M propanediamine
acetate (PDA) buffer, pH 9, as previously described [34]. In this agarose gel electrophoresis sys-
tem, GAGs and PGs migrate through the gel according to their affinity with the PDA bulfter,
which is dictated by the fine structure of the GAG chain. Following electrophoresis, the gels
were submerged in 0.2% CETAVLON (cetyltrimethylammonium bromide, Sigma-Aldrich,

St. Louis, MO) for 1 hour at room temperature, which precipitates tetrasaccharides and larger
GAG fragments, and then the gels were dried. In the case of PG analysis, the gels were first sub-
merged in formol:methanol (1:4 v/v) for 30 min and then in the CETAVLON. PG gels were
stained by amido black (for staining proteins) and then stained for 30 min with 0.1% toluidine
blue prepared in a solution of 1% acetic acid, 50% ethanol and 49% water, and destained with
the same solution without toluidine blue (for staining CSPGs, DSPGs and HSPGs). As a result
of this sequential staining process, the protein core is stained blue and the GAG chains are
stained purple. GAG gels were stained with 0.1% toluidine blue prepared in a solution of 1%
acetic acid, 50% ethanol and 49% water, destained with the same solution without toluidine
blue (for staining CS, DS and HS), and then restained with 0.1% toluidine blue prepared in 25
mM sodium acetate buffer, pH 5.0, and destained in this solution without toluidine blue (for
also staining HA). Gels were scanned and quantified using a densitometer and the Quick Scan
2000 program (Helena Laboratories, TX, USA), using CS, DS and HS (extracted from shark
cartilage; all 1 mg/mL) applied to the same gels as standards.

Digestion of glycosaminoglycans with chondroitinases AC and ABC

GAGs (60 ug) extracted from archaeological human bone samples were suspended in MilliQ
water (60 pL) and the sample divided in three, boiled for 15 min to inactivate any residual max-
atase, and lyophilized. The first sample was suspended in 20 pL chondroitin AC lyase (1 U/mL,
Sigma- Aldrich, St. Louis, MO), the second sample in 20 uL chondroitin ABC lyase (1 U/mL,
Sigma-Aldrich) and the third sample in 20 pL MilliQ water. The samples were incubated over-
night at 37°C and 5 pL of each sample analyzed by agarose gel electrophoresis as mentioned
above. Digestion control samples (C4S and a mixture of CS, DS and HS extracted from shark
cartilage; all 1 mg/mL) were also incubated in chondroitin AC lyase, chondroitin ABC lyase or
MilliQ water overnight at 37°C and analyzed by agarose gel electrophoresis.
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Digestion of glycosaminoglycans with heparin lyase Il and a
Flavobacterium heparinum extract

GAGs (60 pug) extracted from archaeological human bone samples were subjected to B-elimina-
tion to ensure that the GAGs (other than N-linked KS chains) had been released from the pro-
tein core. Briefly, the GAG pellet was suspended in 200 pL sodium borohydride (0.0378 g Na
(BH,) in 1 mL NaOH 0.1 M) and kept overnight at room temperature. The solution was then
neutralized using 10% acetic acid (approximately 110 pL). A volume of 500 pL of MilliQ water
was added and the solution transferred to 1 kDa dialysis tubes (GE Healthcare Bio-Sciences
Corp., NJ, USA), and dialyzed at room temperature for 4 hours in distilled water. The solution
was then lyophilized. The GAG pellet was suspended in 60 uL MilliQ water and the sample
divided in three, boiled for 15 min to inactivate any residual maxatase, and lyophilized. The
first sample was suspended in 2.5 pL heparin lyase II (1 U/mL, Sigma-Aldrich, St. Louis, MO)
and 7.5 pL ethylenediamine acetate buffer 0.05 M (pH 7.0), the second sample in 20 uL Flavo-
bacterium heparinum extract and the third sample in 20 pL MilliQ water. The samples were
incubated overnight at 30°C, lyophilized, suspended in 5 pL MilliQ water, and analyzed by aga-
rose gel electrophoresis as described above. The crude extract of Flavobacterium heparinum
grown in the presence of heparin degrades heparin and HS [35]. Heparitinases [ and II, and a
heparin lyase have been identified in the crude extract of Flavobacterium heparinum [36,37].
The crude extract of Flavobacterium heparinum also degrades HA, C4S and C6S [38]. In addi-
tion, the crude extract of Flavobacterium heparinum grown in the presence of CS degrades DS
[39,40].

Digestion control samples (DS, C4S, HS, and a mixture of CS, DS and HS extracted from
shark cartilage; all 1 mg/mL) were also incubated in Flavobacterium heparinum extract, hepa-
rin lyase IT or MilliQ water overnight at 30°C and analyzed by agarose gel electrophoresis.

Quantification of hyaluronic acid

HA was quantified as previously described [41]. Briefly, 96-well plates were incubated with
purified HA binding protein extracted from bovine nasal cartilage in coating buffer (0.06 M
NaHCO:3, 0.5 g/L sodium azide, pH 9.6) (100 uL/well) overnight at 4°C. The plates were then
washed three times with washing buffer (0.05 M Tris—HCI, 0.15 M NaCl, 0.05% Tween 20,
0.02 mM EDTA II1, 7.7 mM sodium azide, pH 7.75). Blocking buffer (the washing buffer con-
taining 1% bovine serum albumin (BSA)) was added to each well (200 uL/well) and the plates
kept at 4°C for at least 2 hours, the blocking buffer being removed only when the samples were
added. GAGs (20 pg) extracted from archaeological human bone samples were suspended in
blocking buffer, and 100 pL added to each well (triplicate). Standard HA (extracted from
human umbilical cord; Sigma-Aldrich) prepared in blocking buffer was added to the plate
(100 pL/well, triplicate) to produce a concentration curve (0, 0.48, 1.95, 7.8, 31.2, 125, 500 and
1000 ng/mL HA). The plates were kept overnight at 4°C. The plates were then washed 5 times
with washing buffer, biotinylated HA binding protein diluted 1:5000 in blocking buffer was
added (100 pL/well) and the plates kept at room temperature for 2 hours on a Delfia PlateShake
(1296-004; Perkin Elmer, Turku, Finland). The plates were then washed 5 times in washing
buffer. Europium-conjugated streptavidin (Delfia Eu-labelling kit, Perkin Elmer) diluted
1:10,000 in blocking buffer was added (100 uL/well) and the plates kept at room temperature
for 30 min on the shaker. The plates were then washed 5 times with washing buffer and incu-
bated in Delfia Enhancement solution (200 uL/well) (Perkin Elmer) for 5 min at room temper-
ature on the shaker. The Enhancement solution was added using a Delfia Plate Dispenser
(1296-041; Perkin Elmer). The plate was read using an Elisa ELX 800 Wallac Victor® 1420
Multilabel Counter (Perkin Elmer). The quantity of HA was then calculated per mg of protein.
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Quantification of proteins

The quantity of proteins extracted (i.e. from 100 mg of bone powder and 25 mg of tooth pow-
der) was calculated using a Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford, IL)
according to the manufacturer’s protocol.

Immunohistochemistry

Transverse bone sections (60 pm thick) were obtained using a Leica SP1600 Saw Microtome
(Leica Biosystems, Nussloch, Germany). Bone decalcification results in loss of proteins, and by
using the Leica SP1600 Saw Microtome, which is comprised of a diamond-coated blade, hard
materials such as bone can be sliced without any previous treatment that could lead to changes
in bone composition and structure. The bone slices were hydrated in PBS buffer for 1 hour at
4°C and then fixed in 2% buffered paraformaldehyde for 30 min followed by washing in PBS
and antigen recovery (10 min incubation in 10 mM sodium citrate pH 6 at 100°C). The bone
slices were then washed, incubated in 10% hydrogen peroxide for 30 min, washed, and unspe-
cific protein binding sites were blocked with 5% fetal bovine serum (FBS). The slices were then
incubated with primary antibodies, or biotinylated HA binding protein (prepared in the labo-
ratory [42]), overnight at 4°C. The primary antibodies used were: rabbit anti-fibromodulin (H-
50, Santa Cruz, Santa Cruz, CA), goat anti-decorin (22613, Santa Cruz), rabbit anti-biglycan
(H-150, Santa Cruz), goat anti-glypican 1 (14645, Santa Cruz), mouse anti-chondroitin 6-sul-
fate (Millipore MAB2035), mouse anti-bone sialoprotein (BSP) II (73497, Santa Cruz), rabbit
anti-osteocalcin (30044, Santa Cruz) and goat anti-collagen IAI (25974 Santa Cruz). Prior to
using the antibody mouse anti-chondroitin 6-sulfate (Millipore MAB2035), the bone sections
were incubated in chondroitin AC lyase, overnight at 37°C. Bone sections were washed and
then processed using the Universal Dako LSAB+ Kit, Peroxidase (LSAB+ Kit, HRP) and Dako
Liquid DAB+ Substrate Chromogen System (Dako, Glostrup, Denmark) (incubation with the
biotinylated link from the LSAB+ Kit was omitted when the biotinylated HA binding protein
was used). Finally, bone sections were incubated sequentially in 30% ethanol, 50% ethanol,
70% ethanol, 90% ethanol, 100% ethanol, ethanol:xylol (1:1), xylol, and then mounted on glass
slides in Permount (Thermo Fisher Scientific Inc., Waltham, MA) and sealed with nail polish.
Negative control immunostainings were performed with the omission of each primary anti-
body, in the presence of FBS, overnight at 4°C.

HPLC

The disaccharide sulfation pattern of the CS population extracted from archaeological human
adolescent femur was determined by strong anion exchange high pressure liquid chromatogra-
phy (HPLC). The chromatographic equipment included a U3000HPLC from Dionex, two sin-
gle piston pumps, a RF2000 fluorescence detector from Dionex with a 12-ul flow cell volume, a
dry reaction bath (FH-40) and a thermocontroller (TC-55) from Brinkman Instruments as pre-
viously described [43]. The disaccharides were separated using a Dionex Sax column (2.4 mm
x 150 mm). The flow rate was 0.5 ml/min and the gradient was performed using Pump 1 at
50% of the total flow rate with Buffer A, 0.00316 M HCL pH 2.5 and Buffer B, 1 M NaCl. Sub-
sequently, 1.0% NaOH and 0.5% 2-cyanoacetamide at a proportion of 1:1 was mixed to the
effluent using Pump 2 at 50% of the flow rate. The mixture was passed through a reaction coil
(0.25 um inner diameter 15 m long) set in a dry reaction temperature controlled chamber set at
125°C and monitored fluorometrically (excitation wavelength, 346 nm; emission wavelength,
410 nm). Peaks were identified based on the retention times of known CS standards: C6S was
isolated from shark cartilage (Sigma) and the standard C4S:C6S (~30:70%) was isolated from
chick embryo epiphyseal cartilage. The disaccharides were generated by previously digesting
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the samples with Chondroitinase AC. The retention times were compared to previously char-
acterized profiles [44].

Results

Glycosaminoglycans extracted from archaeological human bones and
teeth

GAGs were extracted from archaeological human bones and teeth and analyzed by agarose gel
electrophoresis in PDA buffer, whereby GAGs are separated according to their affinity with the
buffer and can be visualized by toluidine blue staining co-migrating with the standard control
(composed of CS, DS and HS). GAGs extracted from a modern wisdom tooth served as a com-
parative positive control. The electrophoretic profile of the GAGs isolated from bone and tooth
samples revealed the presence of a CS population for all samples, detected as a single band in
the gels (Fig 1A and 1C). This CS population was confirmed to be CS chains by treatment

with specific glycosidases as discussed below. When the same agarose gels were restained and
destained with sodium acetate buffer, HA was also revealed for all samples, detected as a streak
in the gels (Fig 1B and 1D). The GAG profiles were similar for all samples; however, a third
GAG population that co-migrated with HS was also detected in two samples; adult radius and
adult ulna (arrows in Fig 2).

The densitometric measurements of the CS band are shown in Table 1. As can be observed,
the total quantity of CS extracted from 100 mg of bone or tooth powder varied between 1.51
and 23.36 pg, with a mean quantity of 10.3 pg. The CS yield for some bone samples was higher
than for others; more CS was extracted from juvenile femur than from adult and adolescent
femur, although this was not the case for humeri and tibiae, where similar amounts were
extracted from adult and juvenile samples, and the opposite was seen for ulna samples. How-
ever, GAGs could be isolated from all samples analyzed and clear profiles observed even when
only small sample sizes were available, and there was no indication that preference should be
given to one bone over another when extracting GAGs from archaeological samples. Approxi-
mately one fifth of the quantity of CS extracted from the modern tooth was extracted from the
two archaeological teeth thereby indicating that at least 20% of the GAGs were preserved in
ancient teeth. These GAGs could, however, be in the form of intact GAG chains or most likely
GAG fragments of a size greater than a tetrasaccharide since smaller fragments are not
observed by agarose gel electrophoresis in PDA bulftfer.

In order to investigate whether the smear revealed in the agarose gel electrophoresis, when
distained with sodium acetate, was indeed HA (Fig 1), the HA content of ten samples was
quantified using a previously described probe-based sandwich ELISA assay [41]. A significant
quantity of HA was detected in all samples analyzed (Table 2).

As mentioned above, the GAGs extracted from nine samples were degraded with chondroitin
ACllyase or chondroitin ABC lyase, specific glycosidases, in order to identify whether the elec-
trophoretic band observed in Fig 1 was solely CS or a mixture of CS and DS. Chondroitin AC
lyase degrades polysaccharide chains containing B-(1-4) and p-(1-3) linkages between hexosa-
mines and glucuronic acid residues to oligosaccharides, mainly disaccharides, and therefore
degrades CS, whilst chondroitin ABC lyase degrades polysaccharides containing -(1-4)-D-hex-
osaminyl and B-(1-3)-D-glucuronosyl or a-(1-3)-L-iduronosyl linkages to disaccharides and
therefore degrades both CS and DS. The GAGs were analyzed by agarose gel electrophoresis in
PDA bulffer following digestion. Small GAG fragments, such as degraded GAG fragments, are
not precipitated by CTV and therefore do not appear in stained gels. The electrophoretic band
disappeared from the gels following digestion with chondroitinases AC and ABC in all instances
(five of the samples are shown in Fig 2). Since the electrophoretic band disappeared following
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Fig 1. Electrophoresis in PDA buffer of glycosaminoglycans extracted from archaeological human bones and teeth. (A and C) GAGs isolated from
archaeological human bones and teeth, as well as from a modern adult human tooth, were analyzed by agarose gel electrophoresis in PDA buffer. The gels
were stained with 0.1% toluidine blue prepared in a solution containing 1% acetic acid and 50% ethanol, and destained with the same solution without
toluidine blue (for staining CS, DS and HS). (B and D) After photography of (A), the gels were stained with 0.1% toluidine blue prepared in 25 mM sodium
acetate buffer, pH 5.0, and destained in this solution without toluidine blue (for also staining HA). CS: chondroitin sulfate; DS: dermatan sulfate; HS: heparan
sulfate; St: standard (CS, DS and HS extracted from shark cartilage); Or: origin.

doi:10.1371/journal.pone.0131105.9001

digestion with chondroitin AC lyase, which degrades CS but not DS, the isolated CS population
consisted solely of CS (asterisks in Fig 2).

In the case of two archaeological human bone samples, an electrophoretic band migrating
in line with HS standard was also observed (arrows in Fig 2). GAGs extracted from these two
samples were digested with heparin lyase IT (which degrades HS) or Flavobacterium heparinum
extract (which degrades CS, DS and HS) in order to confirm whether this band was a HS popu-
lation. The degraded GAGs were analyzed by agarose gel electrophoresis in PDA buffer. All
positive controls indicated that the enzymes were working well (Fig 2). The electrophoretic
band migrating in line with HS was not susceptible to digestion with heparin lyase II or
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Fig 2. Electrophoresis in PDA buffer of glycosaminoglycans extracted from archaeological bones and degraded with glycosaminoglycan-specific
enzymes. GAGs were extracted from archaeological human adult and juvenile humerus (A), archaeological human adult and adolescent ulna (B and C), and
archaeological human adult radius (D), subjected to B-elimination in some instances (samples 16 and 25), digested with chondroitin AC lyase, chondroitin
ABC lyase, heparin lyase Il or Flavobacterium heparinum extract, and analyzed by agarose gel electrophoresis in PDA buffer. The gels were stained with
0.1% toluidine blue prepared in a solution containing 1% acetic acid and 50% ethanol, destained with the same solution without toluidine blue, restained with
0.1% toluidine blue prepared in 25 mM sodium acetate buffer, pH 5.0, and destained in this solution without toluidine blue. CS: chondroitin sulfate; DS:
dermatan sulfate; HS: heparan sulfate; Or: origin; St: standard (CS, DS and HS extracted from shark cartilage); C4S: chondroitin 4-sulfate; AC: chondroitin
AC lyase; ABC: chondroitin ABC lyase; h’asell: heparin lyase II; Flavo: Flavobacterium heparinum extract; 16: adult radius; 18: adult humerus; 19: juvenile
humerus; 22: adolescent ulna; 24: adult ulna; 25: adult ulna.

doi:10.1371/journal.pone.0131105.9002

Flavobacterium heparinum extract. Therefore, this fragment could reveal valuable information
and is currently being analyzed; however, it is beyond the scope of this study (Fig 2).

HPLC profile of chondroitin sulfate isolated from archaeological human
bones

The CS population isolated from two of the archaeological human bones was analyzed by
strong anion exchange using HPLC to determine the sulfation pattern of CS. The chromato-
gram showed a large C6S peak comprising over 95% of the CS (Fig 3C). A smaller C4S peak
was also observed comprising less than 5% of the CS (Fig 3C). Therefore, this data reveals it is
possible to characterize the fine structure of the GAGs purified from archaeological bones.
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Table 1. Densitometric quantification of chondroitin sulfate extracted from archaeological human bones and teeth.

Type of bone ID Cs CS in 100 mg of mineralized tissue Protein in 100 mg of mineralized tissue CS in pg/mg of
No.  (ug)® (ug)° (mg)° protein®
Adult femur 1 0.959 8.630 0.512 16.855
2 0.343 3.091 0.429 7.205
1.072 11.153 0.397 28.093
31 1.624 6.496 0.404 16.079
Adolescent 4 0.781 7.184 0.344 20.884
femur
Juvenile femur 5 2.211 8.845 0.356 24.845
6 2.346 9.385 0.165 56.878
7 3.046 12.186 0.236 51.636
8 2.769 11.075 0.227 48.789
9 3.466 20.797 0.217 95.838
Adult tibia 10 0.973 15.564 0.396 39.303
11 3.540 14.159 0.224 63.210
12 0.721 6.631 0.655 10.124
13 2.433 19.460 0.364 53.462
Juvenile tibia 14 2.850 11.400 0.195 58.462
15 3.069 12.274 0.228 53.833
Adult radius 16 2.467 9.867 0.372 26.524
17 2.010 8.039 0.450 17.864
Adult ulna 23 2.152 8.606 0.231 37.255
24 3.062 6.125 0.223 27.466
25 3.782 15.129 0.205 73.800
Adolescentulna 22 3.096 6.193 0.180 34.406
Juvenile ulna 26 0.377 1.508 0.186 8.108
27 1.157 4.627 0.258 17.934
Adult humerus 18 3.326 17.297 0.243 71.181
20 3.913 15.651 0.270 57.967
21 0.453 3.622 0.425 8.522
32 3.388 13.552 0.492 27.545
Juvenile 19 3.773 7.545 0.293 25.751
humerus
Modern tooth 28 4.380 23.358 1.366 17.100
Ancient tooth 29 0.578 4.622 0.670 6.899
30 0.624 6.242 1.050 5.945

@ The CS band observed in the gels in Fig 1 was quantified by densitometry in comparison to the standard CS band (or average value for gels with more
than one standard).

® The total quantity of CS extracted from 100 mg of bone or tooth powder was calculated.

¢ The total quantity of protein extracted from 100 mg of bone or tooth powder was calculated.

9 The total quantity of CS was divided by the total quantity of protein extracted from 100 mg of bone or tooth powder.

doi:10.1371/journal.pone.0131105.t001

Immunolocalization of glycosaminoglycans in archaeological bones

The GAG groups isolated from all archaeological human bone and tooth samples were CS and
HA, and HPLC analysis showed C6S to be the major type of CS. We analyzed the location of
C6S and HA in archaeological human bone slices. Due to the potential fragility and already
compromised structure of the archaeological bones, care was taken to obtain bone slices with
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Table 2. Quantification of hyaluronic acid extracted from archaeological human bones and teeth by probe-based sandwich ELISA assay.

Type of bone

Adult femur
Adolescent femur
Juvenile femur

Adult radius
Adult humerus
Juvenile humerus
Adolescent ulna
Adult ulna

ID No.

31 3.982
4 1.119
8 0.843
) 0.795
16 0.965
18 0.598
19 0.559
22 0.354
24 0.634
25 5.169

HA in 100 mg of mineralized tissue (ng)® Protein in 100 mg of mineralized tissue (mg)° HA in ng/mg of protein °

0.215 18.521
0.350 3.197
0.323 2.610
0.710 1.120
0.185 5.216
0.305 1.961
0.346 1.616
0.180 1.967
0.547 1.159
0.509 10.155

2 The total quantity of HA extracted from 100 mg of bone powder was calculated.
® The total quantity of protein extracted from 100 mg of bone powder was calculated.
° The total quantity of HA was divided by the total quantity of protein extracted from 100 mg of bone or tooth powder.

doi:10.1371/journal.pone.0131105.t002
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no previous decalcification. C6S was immunostained using anti-chondroitin 6-sulfate
(MAB2035, Millipore) following digestion with chondroitin AC lyase since this antibody rec-
ognizes C6S stubs, and HA was labeled using biotinylated HA binding protein. C6S was ana-
lyzed in adult humerus and adult femur. C6S staining was similar for both types of bone;
evenly distributed throughout the bone matrix (Fig 4). HA was analyzed in adult humerus and
juvenile humerus. A different immunostaining pattern was observed for the two types of bone;
more intense and evenly distributed throughout the bone matrix in juvenile bone slices (Fig 5),
and in a concentric pattern surrounding the osteons in adult bone slices (asterisks in Fig 5).

Proteoglycans extracted from archaeological human bones and teeth

PGs were successfully extracted from all of the archaeological human bone and tooth samples
analyzed, and the PG profile was compared to that of a modern wisdom tooth. The PGs were
analyzed by agarose gel electrophoresis in PDA buffer, and a PG band was observed for all
samples co-migrating with the GAG standard CS (Fig 6). Since the GAG analysis discussed
above detected CS but not DS in the archaeological human bones and teeth, this PG population
is a CSPG and not a CS/DSPG. The PG profile of archaeological bones was similar to that of a
modern tooth (Fig 6). Proteins co-extracted with the PGs were observed in the gel as a smear
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Fig 3. Disaccharide content of the CS population extracted from archaeological human adolescent femur was characterized by strong anion
exchange liquid chromatography. (A) C6S standard profile; (B) C4S/C6S Standard profile; and (C) profile of CS extracted from archaeological human
adolescent femur. (a) Peak representing the C6S disaccharide; and (b) peak representing the C4S disaccharide.

doi:10.1371/journal.pone.0131105.g003
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Fig 4. Immunolocalization of chondroitin-6-sulfate in archaeological human bone slices.
Archaeological human adult humerus or femur slices (60 um thick) were labeled with anti-chondroitin-
6-sulfate (following digestion with chondroitin AC lyase) and developed using DAB (brown). The secondary
control was prepared omitting the primary antibody (archaeological human adult femur is shown). Cortical
bone is viewed on the left and trabecular bone on the right. Scale bar: 200 pm.

doi:10.1371/journal.pone.0131105.9004

by amide black staining (stained in blue in Fig 6) followed by the toluidine blue staining for
PGs (stained in purple in Fig 6).

Immunolocalization of proteoglycans in archaeological human bones

For a more in-depth analysis as to which PG populations are present in archaeological human
bones, immunohistochemistry was performed on archaeological human adult bone slices, par-
ticularly for SLRPs, which are an important family of PGs described in bones playing a major
role during all phases of bone formation. Fibromodulin, decorin, biglycan and glypican were
detected in the archaeological human bone slices, and each PG presented a distinct distribution
pattern throughout the bone tissue (Fig 7). As can be seen in Fig 7, fibromodulin, decorin and
biglycan appear to be more closely associated with osteons in trabecular bone tissue (indicated
with asterisks) and diffused in cortical bone tissue, whilst glypican is diffused throughout the
bone matrix in both types of bone tissue. There is less intense staining for glypican compared
to the other three PGs (Fig 7). In juvenile bones, biglycan was observed evenly distributed
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Juvenile HA

Adult HA

Fig 5. Inmunolocalization of hyaluronic acid in archaeological human bone slices. Archaeological
human adult or juvenile humerus slices (60 um thick) were labeled with biotinylated binding protein and
developed using DAB (brown). Cortical bone is viewed on the left and trabecular bone on the right. The
asterisks show HA in a concentric pattern surrounding the osteons. Scale bar: 200 pm.

doi:10.1371/journal.pone.0131105.9005

throughout the bone matrix, whilst in adolescent bones it had a similar distribution pattern to
adult bones (Fig 8).

The localization of collagen types I and III and the non-collagenous proteins osteocalcin
and bone sialoprotein II was also analyzed by immunohistochemistry since these proteins are
present in a substantial amount in organic bone matrix. As can be seen in Fig 9, collagen I was
evenly distributed throughout the bone tissue, whilst osteocalcin and bone sialoprotein II had
an irregular distribution pattern.

Discussion

For the first time, PGs and GAGs were isolated from archaeological human bones and teeth.
PGs and their constituent GAG chains bind to hydroxyapatite [4,5], which would protect these
GAGs from degradation over the years. HS, heparin and DS have been shown to bind more
strongly to hydroxyapatite than C6S, C4S and HA [45]. However, our research showed the
presence of C6S, C4S and HA, but not of HS or DS, in archaeological human bone samples,
and detected only the protein core of a HSPG and a KSPG, suggesting that other factors could
play a role in GAG preservation. Moreover, some PGs and GAGs in archaeological bones and
teeth could be degraded more quickly than others due to extrinsic factors, such as enzymes pro-
duced by bacteria in the environment [46,47], and intrinsic factors, such as binding to collagen
[48,49,50].

The GAGs could be identified by electrophoretic mobility in 1,3-diaminopropane with the
use of buffers at different pHs and by digestion with specific enzymes. The GAGs observed for
all bone and tooth samples were CS and HA. In addition, an unidentified electrophoretic band
was also observed for two archaeological human bone samples. Our results are similar to those
of a study of GAGs from human femoral compact bone in autopsy cases and of a study of
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Fig 6. Proteoglycans extracted from ancient bones and teeth. PGs were extracted from various types of archaeological human bone samples (femur,
humerus, radius, tibia and ulna) identified as juvenile, adolescent or adult, and also archaeological adult teeth and a modern wisdom tooth. Extracted PGs
were analyzed by agarose gel electrophoresis in PDA buffer, and stained by amide black followed by toluidine blue. Proteins are stained in blue and GAG
chains in purple. CS: chondroitin sulfate; DS: dermatan sulfate; HS: heparan sulfate; St: standard (CS, DS and HS extracted from shark cartilage).

doi:10.1371/journal.pone.0131105.g006

GAGs from human dentine and cementum of adult patients, which describe CS and HA; CS as
the predominant GAG and HA as a minor proportion of the GAGs [51,52]. Previous research
of human alveolar bone samples obtained from oral surgical procedures has identified CS, DS,
HS and HA in non-demineralized extracts and only CS in demineralized samples [53]. DS and
HS were not detected in the present study, even though the samples had not been demineral-
ized, but alveolar bone was not amongst the types of bone analyzed, which included femur,
humerus, tibia, radius and ulna.

The quantities of CS and HA extracted did not appear to be dependent on the type of bone
or whether it was a juvenile, adolescent or adult bone, but most likely on how degraded the
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Fig 7. Inmunolocalization of proteoglycans in archaeological human adult bone slices. Archaeological
human adult humerus slices (60 um thick) were labeled for decorin, biglycan, fibromodulin or glypican, and
developed using DAB (brown). The secondary control was prepared omitting the primary antibodies. Cortical
bone is viewed on the left and trabecular bone on the right. Scale bar: 200 um.

doi:10.1371/journal.pone.0131105.9007

bone was, although the only bone samples that stood out as being more degraded than the oth-
ers were sample ID nos. 16 and 25 (adult radius and adult ulna, respectively), which crumbled
when sliced using the microtome, but this could be due to other reasons such as disease. Inter-
estingly, these were the two bone samples for which an unidentified electrophoretic band was
observed.

HPLC analysis identified the CS population extracted from the archaeological human bone
samples as over 95% C6S and less than 5% C4S. Previous research has reported a CS population
of predominantly C6S in a mixture of human dentine and cementum from fresh adult teeth,
with smaller amounts of C4S [51]. Our findings differ to those observed for human femoral
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Juvenile biglycan

Adolescent biglycan

Fig 8. Inmunolocalization of biglycan in archaeological human juvenile and adolescent bone slices.
Archaeological human juvenile humerus and adolescent femur slices (70 pm thick) were labeled for biglycan
and developed using DAB (brown). Cortical bone is viewed on the left and trabecular bone on the right. Scale
bar: 200 pm.

doi:10.1371/journal.pone.0131105.9008

compact bone in autopsy cases and human alveolar bone samples obtained from oral surgical
procedures, which identified only C4S as the extracted CS [52,53].

The localization of C6S and HA was analyzed in archaeological human bone slices. C6S was
analyzed in two types of archaeological human bone; adult humerus and adult femur. The
staining pattern for both types of bone was similar; evenly distributed throughout the bone
matrix. HA was analyzed in adult humerus and juvenile humerus, and a different staining pat-
tern was observed; distributed throughout the bone matrix in juvenile bone and in a concentric
pattern around the osteons in adult bone. The different distribution patterns of HA in juvenile
and adult bones could reflect the role of this GAG in bones, which includes bone resorption,
osteoclast motility and osteoblast differentiation [54,55,56].

A CSPG population was identified in both archaeological human bones and teeth. CS has
been shown to be associated with a protein moiety in human dentine from freshly extracted
teeth [57]. Immunohistochemistry assays showed positive labeling for two CS/DS SLRPs, bigly-
can and decorin. Biglycan and decorin bind to hydroxyapatite in bone [58], which would have
protected these molecules from degradation over the years. A study of biglycan and decorin
expression in rat cell culture models has shown that these two SLRPs contain mainly DS substi-
tutions during early bone matrix formation, and carry only CS chains during mineralization
[12], which could explain why CS but not DS was extracted from the archaeological human
bone samples. A study of adult human bone biopsies has shown that decorin is observed mostly
in the perilacunar matrix, canaliculi of osteocytes, and matrix immediately adjacent to quies-
cent Haversian canals, whilst biglycan is evenly distributed throughout cortical and trabecular
bone matrix [59]. In our study, biglycan and decorin appeared to be closely associated with

PLOS ONE | DOI:10.1371/journal.pone.0131105 June 24,2015 16/21



@‘PLOS | ONE

Proteoglycans and Glycosaminoglycans in Archaeological Human Skeletons

Collagen I Osteocalcin

Secondary ctr

Fig 9. Immunolocalization of BSPII, osteocalcin and collagen | in archaeological human bone slices.
Archaeological human femur slices (60 um thick) were labeled for BSPII, osteocalcin and collagen I, and
developed using DAB (brown). Cortical bone is viewed on the left and trabecular bone on the right. Scale bar:
200 ym.

doi:10.1371/journal.pone.0131105.9009

osteons in adult archaeological human bones. In juvenile bones, biglycan was observed evenly
distributed throughout the bone matrix, whilst in adolescent bones it had a similar distribution
pattern to adult bones.

Immunohistochemistry results also showed positive labeling for a cell surface HSPG, glypi-
can-1, although there was less staining for glypican-1 than for the two SLRPs, decorin and
biglycan. However, the GAGs isolated from the archaeological human bone samples did not
include HS. The glypican-1 antibody used binds to the protein core and therefore the protein
core would have been detected in the immunohistochemistry assays. In intact cells, glypican is
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linked to the cell membrane by glycosylphosphatidylinositol linkages; however, considering
that cells are no longer present in archaeological bones, the glypican-1 protein core, or frag-
ments thereof, would have become attached to the ECM during cell death. Fibromodulin, a
SLRP with KS substitutions, was also detected by immunohistochemistry. The fibromodulin
antibody used binds to the protein core, and therefore the protein core would have been
detected in the immunohistochemistry assays. KS was not detected in our study but has previ-
ously been described in human bone [60]. Furthermore, the unidentified electrophoretic band
migrating in line with HS which was not susceptible to digestion with heparin lyase II or Flavo-
bacterium heparinum extract could still prove to be KS in future experiments.

Collagen type I is the most abundant collagen type in bone. Together with several non-
collagenous proteins, such as osteocalcin and osteopontin, collagen I forms a scaffold for
mineral deposition, and SLRPs regulate collagen fibril assembly and diameter [2,61]. Immuno-
histochemistry results showed collagen I evenly distributed throughout the bone tissue in
archaeological human bones. Osteocalcin and bone sialoprotein II, which are specific to bone,
were also observed in the archaeological bone samples, with an irregular distribution pattern.

Conclusions

This is the first time to our knowledge that PGs and GAGs have been analyzed in archaeolog-
ical human bones and teeth. PGs and GAGs play a major role in bone morphogenesis, homeo-
stasis and degenerative bone disease, and the ability to isolate and characterize PG and GAG
content from archaeological skeletons could unveil valuable information. Our methods enable
the extraction and analysis of GAGs from small amounts of archaeological human bone and
tooth samples, and in this study, clear profiles were observed for all samples analyzed. The
finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth
opens novel venues for the fields of Paleontology and Forensic Science.
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