611 research outputs found

    Netting Liver Disease:Neutrophil Extracellular Traps in the Initiation and Exacerbation of Liver Pathology

    Get PDF
    The liver plays a vital role in the immune system. Its unique position in the portal circulation and the architecture of the hepatic sinusoids, in combination with the wide-ranged population of immunocompetent cells, make the liver function as an immune filter. To aid in pathogen clearance, once challenged, the liver initiates the rapid recruitment of a wide variety of inflammatory cells, including neutrophils. These neutrophils, in conjunction with platelets, facilitate the release of neutrophil extracellular traps (NETs), which are web-like structures of decondensed nuclear DNA, histones, and neutrophil proteins. NETs function as both a physical and a chemical barrier, binding and killing pathogens circulating in the blood stream. In addition to their antimicrobial role, NETs also bind platelets, activate coagulation, and exacerbate host inflammatory response. This interplay between inflammation and coagulation drives microvascular occlusion, ischemia, and (sterile) damage in liver disease. Although direct clinical evidence of this interplay is scarce, preliminary studies indicate that NETs contribute to progression of liver disease and (thrombotic) complications. Here, we provide an overview of the pathological mechanisms of NETs in liver disease. In addition, we summarize clinical evidence for NETs in different disease etiologies and complications of liver disease and discuss the possible implications for the use of NETs as a diagnostic marker and a therapeutic target in liver disease

    Editorial: Platelets and Immune Responses During Thromboinflammation

    Get PDF
    The word thromboinflammation appeared in 2004 to describe the interactions and cooperation between platelets and neutrophils in the context of arterial in-stent restenosis (1). Almost two decades later, multiple sources of evidence clearly show that the interplay between thrombosis and inflammation involves several pathways and occurs in various pathophysiological situations such as sepsis, disseminated intravascular coagulation (DIC), stroke, cancer, stress and rheumatoid arthritis, among others. Thromboinflammation is driven by mutual interactions and reciprocal activation between endothelial cells, subendothelium, leukocytes, platelets, and the humoral innate immune system, involving the complement, coagulation, and fibrinolytic signaling cascades.Fil: Schattner, Mirta Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Jenne, Craig N.. University of Calgary; CanadáFil: Negrotto, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Ho-Tin-Noe, Benoit. Universite de Paris; Franci

    Ion Beam Tracking using Ultrasound Motion Detection

    Get PDF

    Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice

    Get PDF
    We investigated the contribution of human platelets to macrophage effector properties in the presence of lipopolysaccharide (LPS), as well as the beneficial effects and time frame for platelet transfusion in septic animals. Our results show that platelets sequester both pro-(TNF-α/IL-6) and anti-(IL-10) inflammatory cytokines released by monocytes. Low LPS concentrations (0.01 ng/mL) induced M2 macrophage polarization by decreasing CD64 and augmenting CD206 and CD163 expression; yet, the presence of platelets skewed monocytes toward type 1 macrophage (M1) phenotype in a cell-contact-dependent manner by the glycoprotein Ib (GPIb)-CD11b axis. Accordingly, platelet-licensed macrophages showed increased TNF-α levels, bacterial phagocytic activity, and a reduced healing capability. Platelet transfusion increased inducible nitric oxide synthase (iNOS)+ macrophages, improving bacterial clearance and survival rates in septic mice up to 6 h post-infection, an effect that was abolished by CD11b and GPIb blockade. Our results demonstrate that platelets orchestrate macrophage effector responses, improving the clinical outcome of sepsis in a narrow but relevant time frame.Fil: Carestia, Agostina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentina. University of Calgary; CanadáFil: Mena, Hebe Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Olexen, Cinthia Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Ortiz Wilczyñski, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Negrotto, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Errasti, Andrea Emilse. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Farmacologia; ArgentinaFil: Gomez, Ricardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Jenne, Craig N.. University of Calgary; CanadáFil: Carrera Silva, Eugenio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Schattner, Mirta Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentin

    Global Substrate Profiling of Proteases in Human Neutrophil Extracellular Traps Reveals Consensus Motif Predominantly Contributed by Elastase

    Get PDF
    Neutrophil extracellular traps (NETs) consist of antimicrobial molecules embedded in a web of extracellular DNA. Formation of NETs is considered to be a defense mechanism utilized by neutrophils to ensnare and kill invading pathogens, and has been recently termed NETosis. Neutrophils can be stimulated to undergo NETosis ex vivo, and are predicted to contain high levels of serine proteases, such as neutrophil elastase (NE), cathepsin G (CG) and proteinase 3 (PR3). Serine proteases are important effectors of neutrophil-mediated immunity, which function directly by degrading pathogenic virulent factors and indirectly via proteolytic activation or deactivation of cytokines, chemokines and receptors. In this study, we utilized a diverse and unbiased peptide library to detect and profile protease activity associated with NETs induced by phorbol-12-myristate-13-acetate (PMA). We obtained a "proteolytic signature" from NETs derived from healthy donor neutrophils and used proteomics to assist in the identification of the source of this proteolytic activity. In addition, we profiled each neutrophil serine protease and included the newly identified enzyme, neutrophil serine protease 4 (NSP4). Each enzyme had overlapping yet distinct endopeptidase activities and often cleaved at unique sites within the same peptide substrate. The dominant proteolytic activity in NETs was attributed to NE; however, cleavage sites corresponding to CG and PR3 activity were evident. When NE was immunodepleted, the remaining activity was attributed to CG and to a lesser extent PR3 and NSP4. Our results suggest that blocking NE activity would abrogate the major protease activity associated with NETs. In addition, the newly identified substrate specificity signatures will guide the design of more specific probes and inhibitors that target NET-associated proteases

    Design of HIFU treatment plans using an evolutionary strategy

    Get PDF
    High Intensity Focused Ultrasound (HIFU) is an emerging technique for non-invasive cancer treatment where malignant tissue is destroyed by thermal ablation. Since one ablation only allows a small region of tissue to be destroyed, a series of ablations has to be conducted to treat larger volumes. To maximize the treatment outcome and prevent injuries such as skin burns, complex preoperative treatment planning is carried out to determine the focal position and sonication time for each ablation. Here, we present an evolutionary strategy to design HIFU treatment plans using a map of patient specific material properties and a realistic thermal model. The proposed strategy allows high-quality treatment plans to be designed, with the average volume of mistreated and under-treated tissue not exceeding 0.1 %

    Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature

    Get PDF
    Neutrophil extracellular traps (NETs) composed of DNA decorated with histones and proteases trap and kill bacteria but also injure host tissue. Here we show that during a bloodstream infection with methicillin-resistant Staphylococcus aureus, the majority of bacteria are sequestered immediately by hepatic Kupffer cells, resulting in transient increases in liver enzymes, focal ischaemic areas and a robust neutrophil infiltration into the liver. The neutrophils release NETs into the liver vasculature, which remain anchored to the vascular wall via von Willebrand factor and reveal significant neutrophil elastase (NE) proteolytic activity. Importantly, DNase although very effective at DNA removal, and somewhat effective at inhibiting NE proteolytic activity, fails to remove the majority of histones from the vessel wall and only partly reduces injury. By contrast, inhibition of NET production as modelled by PAD4-deficiency, or prevention of NET formation and proteolytic activity as modelled in NE(−/−) mice prevent collateral host tissue damage

    A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2^{+} monocytes at a site of sterile injury

    Get PDF
    Monocytes are recruited from the blood to sites of inflammation, where they contribute to wound healing and tissue repair. There are at least two subsets of monocytes: classical or proinflammatory (CCR2^{hi}CX_{3}CR1^{low}) and nonclassical, patrolling, or alternative (CCR2^{low}CX_{3}CR1^{hi}) monocytes. Using spinning-disk confocal intravital microscopy and mice with fluorescent reporters for each of these subsets, we were able to track the dynamic spectrum of monocytes that enter a site of sterile hepatic injury in vivo. We observed that the CCR2^{hi}CX_{3}CR1^{low} monocytes were recruited early and persisted for at least 48 h, forming a ringlike structure around the injured area. These monocytes transitioned, in situ, from CCR2^{hi}CX_{3}CR1^{low} to CX_{3}CR1^{hi}CCR2^{low} within the ringlike structure and then entered the injury site. This phenotypic conversion was essential for optimal repair. These results demonstrate a local, cytokine driven reprogramming of classic, proinflammatory monocytes into nonclassical or alternative monocytes to facilitate proper wound-healing

    Kinstate intervention in ethnic conflicts : Albania and Turkey compared

    Get PDF
    Albania and Turkey did not act in overtly irredentist ways towards their ethnic brethren in neighboring states after the end of communism. Why, nonetheless, did Albania facilitate the increase of ethnic conflict in Kosovo and Macedonia, while Turkey did not, with respect to the Turks of Bulgaria? I argue that kin-states undergoing transition are more prone to intervene in external conflicts than states that are not, regardless of the salience of minority demands in the host-state. The transition weakens the institutions of the kin-state. Experiencing limited institutional constraints, self-seeking state officials create alliances with secessionist and autonomist movements across borders alongside their own ideological, clan-based and particularistic interests. Such alliances are often utilized to advance radical domestic agendas. Unlike in Albania's transition environment, in Turkey there were no emerging elites that could potentially form alliances and use external movements to legitimize their own domestic existence or claims
    • …
    corecore