2,586 research outputs found

    Effective RFID-based object tracking for manufacturing

    Get PDF
    International audienceAbstract Automated Identification and in particular, Radio Frequency Identification (RFID) promises to assist with the automation of mass customised production processes by simplifying the retrieval, tracking and usage of highly specialised components. RFID has long been used to gather a history or trace of object movements, but its use as an integral part of the automated control process is yet to be fully exploited. Such (automated) use places stringent demands on the quality of the sensor data collected and the method used to interpret that data. In particular, this paper focuses on the issue of correctly identifying, tracking and dealing with aggregated objects in customised production with the use of RFID. In particular, this work presents approaches for making best use of RFID data in this context. The presented approach is evaluated in the context of a laboratory manufacturing system that produces customised gift boxes

    Impacts of orography on large-scale atmospheric circulation

    Get PDF
    Some of the largest and most persistent circulation errors in global numerical weather prediction and climate models are attributable to the inadequate representation of the impacts of orography on the atmospheric flow. Existing parametrization approaches attempting to account for unresolved orographic processes, such as turbulent form drag, low-level flow blocking or mountain waves, have been successful to some extent. They capture the basic impacts of the unresolved orography on atmospheric circulation in a qualitatively correct way and have led to significant progress in both numerical weather prediction and climate modelling. These approaches, however, have apparent limitations and inadequacies due to poor observational evidence, insufficient fundamental knowledge and an ambiguous separation between resolved and unresolved orographic scales and between different orographic processes. Numerical weather prediction and climate modelling has advanced to a stage where these inadequacies have become critical and hamper progress by limiting predictive skill on a wide range of spatial and temporal scales. More physically-based approaches are needed to quantify the relative importance of apparently disparate orographic processes and to account for their combined effects in a rational and accurate way in numerical models. We argue that, thanks to recent advances, significant progress can be made by combining theoretical approaches with observations, inverse modelling techniques and high-resolution and idealized numerical simulations

    In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment

    Get PDF
    The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and is of significant interest for future dark matter and neutrino experiments where high signal yields are needed. We report on the methods developed for in-situ characterization and monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of typical measured single-photoelectron charge distributions, correlated noise (afterpulsing), dark noise, double, and late pulsing characteristics. The characterization is performed during the detector commissioning phase using laser light injected through a light diffusing sphere and during normal detector operation using LED light injected through optical fibres

    Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques

    Full text link
    Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.Comment: 16 pages, 16 figure

    The Land Monitor Project

    Get PDF
    The Land Monitor Project is providing information over the southwest agricultural region of WA. It is assembling and processing sequences of Landsat TM data, a new highresolution digital elevation model (DEM) and other spatial data to provide monitoring information on the area of salt-affected land, and on changes in the area and status of perennial vegetation over the period 1988-2000. Land Monitor is a multi-agency project of the Western Australian Salinity Action Plan supported by the Natural Heritage Trust. The Project will also providing estimates of areas at risk from secondary or future salinisation, based on the historical salinity maps and a set of landform variables derived from the high resolution DEM. Sequences of calibrated Landsat Thematic Mapper satellite images integrated with landform information derived from height data, ground truthing and other existing mapped data are used as the basis for monitoring changes in salinity and woody vegetation. Procedures for accurate registration and calibration were developed by CSIRO Mathematical and Information Sciences (CMIS), as were the data integration procedures for salinity mapping and prediction. For the DEM, heights are derived on a 10m grid from stereo aerial photography flown at 1:40,000 scale, using soft-copy automatic terrain extraction (image correlation) techniques. Land Monitor products include: high resolution DEMs; calibrated sequences of Landsat imgery; present and historical salinity maps; predicted salinity maps; maps of change in vegetation status and spectral/temporal statistics. These products are available in a range of formats and scales, from paddock to catchment and shire scales to suit customer needs

    Electric-field-induced coherent coupling of the exciton states in a single quantum dot

    Full text link
    The signature of coherent coupling between two quantum states is an anticrossing in their energies as one is swept through the other. In single semiconductor quantum dots containing an electron-hole pair the eigenstates form a two-level system that can be used to demonstrate quantum effects in the solid state, but in all previous work these states were independent. Here we describe a technique to control the energetic splitting of these states using a vertical electric field, facilitating the observation of coherent coupling between them. Near the minimum splitting the eigenstates rotate in the plane of the sample, being orientated at 45{\deg} when the splitting is smallest. Using this system we show direct control over the exciton states in one quantum dot, leading to the generation of entangled photon pairs

    Measurement of the rate of nu_e + d --> p + p + e^- interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory

    Get PDF
    Solar neutrinos from the decay of 8^8B have been detected at the Sudbury Neutrino Observatory (SNO) via the charged current (CC) reaction on deuterium and by the elastic scattering (ES) of electrons. The CC reaction is sensitive exclusively to nu_e's, while the ES reaction also has a small sensitivity to nu_mu's and nu_tau's. The flux of nu_e's from ^8B decay measured by the CC reaction rate is \phi^CC(nu_e) = 1.75 +/- 0.07 (stat)+0.12/-0.11 (sys.) +/- 0.05(theor) x 10^6 /cm^2 s. Assuming no flavor transformation, the flux inferred from the ES reaction rate is \phi^ES(nu_x) = 2.39+/-0.34 (stat.)+0.16}/-0.14 (sys) x 10^6 /cm^2 s. Comparison of \phi^CC(nu_e) to the Super-Kamiokande Collaboration's precision value of \phi^ES(\nu_x) yields a 3.3 sigma difference, providing evidence that there is a non-electron flavor active neutrino component in the solar flux. The total flux of active ^8B neutrinos is thus determined to be 5.44 +/-0.99 x 10^6/cm^2 s, in close agreement with the predictions of solar models.Comment: 6 pages (LaTex), 3 figures, submitted to Phys. Rev. Letter

    A multi-agency project of the Western Australian Salinity Action Plan supported by the Natural Heritage Trust

    Get PDF
    Land Monitor is a multi-agency project of the Western Australian Salinity Action Plan supported by the Natural Heritage Trust. It will provide land managers and administrators with baseline salinity and vegetation data for monitoring changes over time, and land height data from which contours accurate to two metre intervals can be produced. The Project will also provide estimates of areas at risk from secondary or future salinisation. Land Monitor will cover the 18 million hectares of agricultural area of south-west, Western Australia. Sequences of calibrated Landsat Thematic Mapper satellite images integrated with landform information derived from height data, ground truthing and other existing mapped data sets are used as the basis for monitoring changes in salinity and woody vegetation. Heights are derived on a 10m grid from stereo aerial photography flown at 1:40,000 scale, using soft-copy automatic terrain extraction (image correlation) techniques. Proposed Land Monitor products include salinity maps, predicted salinity maps, enhanced imagery, vegetation status maps and spectral / temporal statistics. These products will be available in a range of formats and scales, from paddock, farm to catchment and shire scales to suit customer needs

    Generalized Fock Spaces, New Forms of Quantum Statistics and their Algebras

    Get PDF
    We formulate a theory of generalized Fock spaces which underlies the different forms of quantum statistics such as ``infinite'', Bose-Einstein and Fermi-Dirac statistics. Single-indexed systems as well as multi-indexed systems that cannot be mapped into single-indexed systems are studied. Our theory is based on a three-tiered structure consisting of Fock space, statistics and algebra. This general formalism not only unifies the various forms of statistics and algebras, but also allows us to construct many new forms of quantum statistics as well as many algebras of creation and destruction operators. Some of these are : new algebras for infinite statistics, q-statistics and its many avatars, a consistent algebra for fractional statistics, null statistics or statistics of frozen order, ``doubly-infinite'' statistics, many representations of orthostatistics, Hubbard statistics and its variations.Comment: This is a revised version of the earlier preprint: mp_arc 94-43. Published versio
    corecore