We formulate a theory of generalized Fock spaces which underlies the
different forms of quantum statistics such as ``infinite'', Bose-Einstein and
Fermi-Dirac statistics. Single-indexed systems as well as multi-indexed systems
that cannot be mapped into single-indexed systems are studied. Our theory is
based on a three-tiered structure consisting of Fock space, statistics and
algebra. This general formalism not only unifies the various forms of
statistics and algebras, but also allows us to construct many new forms of
quantum statistics as well as many algebras of creation and destruction
operators. Some of these are : new algebras for infinite statistics,
q-statistics and its many avatars, a consistent algebra for fractional
statistics, null statistics or statistics of frozen order, ``doubly-infinite''
statistics, many representations of orthostatistics, Hubbard statistics and its
variations.Comment: This is a revised version of the earlier preprint: mp_arc 94-43.
Published versio