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Abstract

Automated Identification and in particular, Radio Frequency Identification (RFID)

promises to assist with the automation of mass customised production processes

by simplifying the retrieval, tracking and usage of highly specialised components.

RFID has long been used to gather a history or trace of object movements, but its

use as an integral part of the automated control process is yet to be fully exploited.

Such (automated) use places stringent demands on the quality of the sensor data

collected and the method used to interpret that data. In particular, this paper fo-

cuses on the issue of correctly identifying, tracking and dealing with aggregated

objects in customised production with the use of RFID. In particular, this work

presents approaches for making best use of RFID data in this context. The pre-

sented approach is evaluated in the context of a laboratory manufacturing system

that produces customised gift boxes.
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1 Introduction

Consumers are increasingly expecting to be able to customise their purchases to suit

specific needs [19]. An example would be the purchase of a new computer where there

are a number of parameters (memory, hard disk, video card) for the customer to select.

This sort of customised manufacture is often referred to aslate-stage customisation

since all of the different options that the customisation provides can be handled during

the last phases of the manufacturing process [21].

Given this trend toward more flexible production processes where hundreds of dif-

ferent types of end-product are produced by combining component parts in different

ways, automation needs to become more sophisticated. Without having dedicated lines

for each product type, and by assuming that the end-product is produced to order rather

than to stock, there is the need to be able to rapidly switch between multiple opera-

tions. Implicitly, this requires highly flexible machines which must be able to quickly

determine the appropriate operation to perform. Achievingfull automation in such

circumstances remains challenging. However, at least someautomation of such built-

to-order production is certainly achievable. At Dell Computer’s OptiPlex plant, for

example, the process of transporting parts around the factory is automated in such a

way that each workstation receives only the parts it needs when it needs them [18].

However the final product assembly is still a manual process.

Completely automating such late-stage customisation requires more intelligent au-

tomation and better sensory information than have traditionally been available. This is

because the decision making in a customisable process does not depend on the mere

presence of the object, but on which type of object, and sometimes on the specific

identity of that object. For example, computer chassisA will be shipped to customer

X, who requires 256Mb of memory, while computer chassisB will be shipped toY,

who requires 1Gb of memory. Thus when a computer chassis arrives at a workstation

where memory chips are inserted, chassisA must be treated differently to chassisB.
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The general problem of establishing and keeping track of theidentity and location of

physical objects, such as these chassis, is referred to hereas thetracking problem.

A system thattracksobjects must provide, on demand:

1. thelocationof an object (where is the memory chip for chassisB?)

2. thestateof an object (does chassisA already have memory installed?)

3. theidentityof an object at a particular location (which chassis is this?).

For such a system to be usefully integrated in the control of amanufacturing process,

the location, state and identity information must be as complete and accurate as possi-

ble. Also, the information must be provided in a timely manner to avoid delaying the

control process.

There are three ways to derive the necessary tracking information: 1) by current

sensor data alone; 2) by a model of the process and some known starting state; or 3)

some combination of sensor data and a model.

A sensor driven approach has the disadvantage that many specialised, complex

sensors may be required in order that location, state and identity of an object can be

derived. There will need to be many of these sensors since prior to many operations in

the production process, there will need to be a decision madebased on the state of the

object (such as, which bore holes have been drilled in an engine block). The sensors

are likely to be complex to detect sufficient information accurately. The sensors may

also need to be specialised since the aspect of the state required to be known will be

specific to the operation about to be performed.

On the other hand, a purely model-based approach may have difficulty dealing with

even small deviations between the model and reality. For example, the model of a car

plant may say that carA is followed byB and thenC. But whenA is removed from

the line to fix a fault, if no sensors tell it otherwise, the model may continue to show

the order asA,B,C whereas it has becomeB,A,C. The consequences are trivial when
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merely trying to trace production progress but can potentially be catastrophic when

they directly affect the control of manufacturing operations.

This paper provides building blocks towards an approach that combines both so-

phisticated sensors that supply identity information witha model-based approach that

allows objects to be tracked when they are out of range of the sensors. In particular, it

focuses on the issue of tracking the location not merely of individual objects but aggre-

gates of multiple objects. The following section provides some background on Radio

Frequency Identification (RFID), which is used in this paperas the main sensor tech-

nology for object tracking. (Note that there are several other possible sensors that could

be used to determine the identity of products, such as bar code scanners or vision sys-

tems [10].) In this work, the focus is on RFID as this offers some specific advantages

but also provides some specific challenges to the implementer. This work attempts to

make use of the advantages while attempting to addressing some of the implementa-

tion challenges. Section 3 presents an approach to derivinga meaningful model of the

structure and contents of aggregated objects using data obtained from RFID sensors.

This approach is then evaluated in the context of a laboratory manufacturing system

developed at Cambridge University.

2 Background

2.1 RFID primer

RFID or Radio Frequency Identification [6] is a technology originally created for friend

or foe transponders in aircraft during the second world war.It involves an asymmetric

RF transmitter / receiver pair, where one is, on request, transmitting its identity to

the other. The identity transmitter is usually referred to as atag, whereas the identity

receiver is known as atag readeror sometimes simplyreader. As long as the distance

between tag and reader is small (within about 0.5 metres for HF or 10 metres for UHF),
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Figure 1: An HF (high frequency) passive RFID tag

it is possible to use apassive tag, one that has no battery of its own. Passive tags (such

as the one shown in figure 1) operate by absorbing some of the energy in the RF signal

transmitted by the reader, and then transmitting back a short message. Key advantages

of passive tags are that they are relatively small (around 50mm square and less than

1mm thick), inexpensive, and, due to having no battery, long-lived. This paper deals

exclusively with passive tags.

Since passive tags operate by absorbing energy in the RF signal, they tend to oper-

ate in bursts rather than continuously. Their response willdepend on the local RF sig-

nal strength and their orientation relative to the local direction of the RF field. In turn,

the local signal strength and direction will depend on what other objects are nearby.

Specifically, conductive objects such as metal or liquid filled containers, will distort

and deflect the field.

When two or more tags exist in the RF field, they may try to replyat the same

time, interfering with each other’s response. This effect is referred to as atag collision.

Various anti-collision protocols exist for preventing or ameliorating the effect of tag

collisions. The simplest of which involve causing the tags to wait for some (possibly

random) amount of time before retransmitting (e.g. ALOHA [6]), while more sophisti-

cated algorithms query specific ranges of tags until only a single one replies (e.g. binary

search [6]). Even using such sophisticated algorithms, increasing the number of tags in

a field will have the effect that any specific tag will be detected less often. In the worst

case, and particularly for objects moving quickly past a reader, it is possible for some
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objects not to be detected at all.

2.2 Related work

RFID technology has been used for a wide range of applications, such as logistics,

livestock tracking, and security. Starting in 1999, the Auto-ID Center was formed to

develop and promote a common platform for using RFID in the retail sector to track

goods as they moved through the supply chain. The central themes of the work were

1. To reduce the cost of RFID tags by minimising the number of bits required to be

stored on the tag, and,

2. To combine RFID with computer networking thus providing an “Internet of

Things”.

Auto-ID later became EPCglobal Inc., and this body has sincedeveloped and ratified a

number of standards relating to RFID tag data (Tag Data Standard and the Electronic

Product Code or EPC), middleware interfaces (Application Level Events), database in-

terfaces (EPC Information Services), and mechanisms for finding those databases given

an EPC (Object Naming Service) amongst others. The overall EPCglobal architecture

is described in an Architectural Framework Standard [20]. Hodges and McFarlane [10]

provide a readable introduction to the main Auto-ID concepts.

More recently, the EU funded project PROMISE [13] has been investigating the

use of a combination of active and passive RFID tags on products for item-level Prod-

uct Lifecycle Management (PLM). PROMISE aims to develop Internet-enabled sys-

tems for managing individual products from their initial development and production,

through use, service and maintenance, through to reuse and recycling at the end of their

life. In comparison with Auto-ID, PROMISE focuses on the whole life of the product

rather than just that prior to sale and also tends towards more data (such as service

history) being stored on the tag, rather than only in back-end databases.
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Product-centric approaches, based on RFID technology, have been proposed by

Kärkkäinen et al., [12]. In such an approach, the product is logically considered to be

acting like an agent—asking various resources for assembly, delivery, or maintenance,

as required. This is also termed “inside-out” control, since the control logic is written

from the product’s perspective, rather than the machine. Inprinciple, this approach

simplifies the development of new control logic for the creation of different versions of

a product. The approach does not address encapsulation of the automated machinery

(such as lathes, drill-presses, robots, and conveyor belts). Without such encapsulation,

flexible control logic for the product would need to encode not merely what operation

needs to be done but also how to do that operation with each capable machine.

Some possible approaches to encapsulating automation resources lie in the exten-

sive holonic manufacturing literature. McFarlane and Bussmann [15] provide a useful

summary. In the holonic view, the conventional centralisedplanning, scheduling and

execution system is broken up into a number of relatively independent “holons”, one

per resource or product. These holons interact by communicating their requirements,

possibly by using some form of auction to find a good fit of product to resource time

slot.

Another form of tracking that makes use of RFID has been developed by Hahnel

et al., [9]. They have implemented a variant of Monte Carlo Markov Localisation to

make use of RFID tags as landmarks for a mobile robot. Their approach addressed a

problem that is a corollary of the one examined here; rather than tracking a moving tag

with fixed readers, Hahnel et al. tracked a pair of mobile readers given fixed tags.

The use of Petri nets in modelling manufacturing processes is well established [4].

They are implicitly used to track the movement of parts for control purposes by super-

visory Petri net control approaches [3].

These related activities form a background to the RFID basedautomation develop-

ment at Cambridge, which is described next.
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2.3 Previous developments

The system described in this paper builds on two prior phasesof development at Cam-

bridge. The first phase was based on a reactive architecture,while the second phase

made use of agent-based approaches.

Hodges et al., [11] developed one of the first laboratory manufacturing systems at

Cambridge to make use of RFID in a customised manufacturing process. This system

made use of a Fanuc M6i 6-DOF robot, two Montech monorail track arranged in two

loops, four small Checkpoint RFID readers, four large Checkpoint RFID readers. and

four custom developed hoppers. The aim of the system was to flexibly custom-build

GilletteTM gift boxes from a variety of component parts.

In the phase one approach, the system worked as follows. First, shuttles carrying

two items each move around a closed loop (loopA), pass by a large reader, thus regis-

tering their presence and identifying the type of item (gel,razor, foam or deodorant),

and come to a stop at a docking station. This arrival triggersthe robot to remove both

items from the shuttle and place them in one of the four hoppers according to type. At

the base of each hopper, a small RFID reader checks the type ofthe item and registers

its presence. The antenna of the small RFID reader was de-tuned slightly so that only

the item at the bottom of the hopper is inspected. Independently of this process, shut-

tles carrying empty boxes move around another closed loop (loopB), pass by a large

reader and come to a stop at a docking station. This triggers the robot, assuming that it

is not busy, to fill the empty gift box with items from the hopper. As a special case, if

the item needed to fill the gift box is available on a shuttle onthe near-side loop, then

this item is transferred by the robot directly.

The phase one approach was largely reactive. The RFID message indicating shuttle

arrival triggered the action of the robot to start. This design meant that the software

was quite simple but also reliable. Note that both items on each shuttle in loopA had to

match; it was not considered possible to accurately detect the order of items from the
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RFID data.

The second phase of development expanded on the phase one system in two ways [1,

7, 5]. First, it added flexible routing so that all of the monorail track was interconnected

and thus finished products and raw materials were intermingled into the same flow.

Second, it introduced a multi-agent-based approach, making use of an agent software

development tool called JACKTM .

When extending the phase one system to allow products to flow into and out of each

manufacturing cell—essentially dealing with routing of parts to appropriate destinations—

it was discovered that some knowledge of the state of the system was required to avoid

deadlocks. Also, as processing times extended, more failures were traced to unreliabil-

ity in the RFID sensory data. Two types of errors in interpreting RFID tag reads were

identified: false negativeswhere a tagged object is in range but not detected, andfalse

positiveswhere a tagged object is outside the expected range but is still detected [2].

In that work, a simple filter was suggested. Further experimental results have been

presented by Floerkemeier et al., [8], who have extended theapproach to use Bayesian

techniques.

The phase two development suffered from a number of design flaws, as described

by Evertsz et al., [5]. The use of multiple agents did not leadto a more robust or

flexible system. This is not to say that the multi-agent approach is flawed, but merely

that it does not necessarily prevent poor design. Furthermore, the complexity of the

system had increased dramatically from phase one. It was notclear that such a system

would be readily accepted by the manufacturing industry given the apparent cost of

developing and maintaining it.

Based on the experience gained with developing the phase twosystem, a third sys-

tem was developed. The tracking mechanism developed for thethird phase is described

and evaluated in the next section and is the main developmentpresented in this paper.
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Figure 2: An example aggregate on a conveyor that consists ofa pallet with two boxes
each containing three bottles.

3 RFID for automated object tracking

In this section, a generic approach is presented to integrate RFID sensor data gathered

over time together with a representation of the state of a manufacturing system and

with a model of how that state is changed. The aim of this approach is to enhance

the accuracy of the identity information and thus improve the robustness of the man-

ufacturing system. It relies on the fact that parts are not always seen in isolation, but

often travel together. A common example is that of pallets and cases. Two cases on

the same pallet will tend to both be detected by RFID sensors at around the same time.

Similarly, the pallet will be detected along with the two cases. All together they form

anaggregate. Aggregated objects provide an opportunity to improve the reliability of

RFID information.

When considering aggregates, such as the one illustrated infigure 2, structure plays

some role. For example, it is easier to remove a case from a pallet than to remove the

pallet from underneath several cases. Typically this structure is hierarchical. A pallet

may contain several cases, each of which may contain some bottles. When a case is

removed from the pallet, those bottles that were in the case will move with it.

In general, to understand how objects and object containersmove from one location

to another, some form of model is required.
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This section is organised as follows: First, a basic mechanism for detecting aggre-

gates from RFID sensor data is described. This is then extended to attempt to support

inferring whether one object is contained within another. Next, the inference made

about the tagged objects must be stored in some form of internal representation and

must also be updated according to a transition model when control actions are taken.

Finally, the rule-based mechanism used to sequence actionsis briefly described.

3.1 Discovering aggregates

In this paper, a time-based approach to determining aggregates is proposed. This ap-

proach relies on constraining the flow of each aggregate as itmoves past the RFID

tag reader. Specifically, there must be a delay both before and after each aggregate is

detected by the reader where no tags are detected. In addition, while the aggregate is

“seen”, the associated tag read events should not be separated by too much of a delay.

Define a string of tag read events occurring at a particular tag readerr as

s(r) = (e1,t1) ,(e2,t2) , . . . ,(en,tn) ,

whereek is a tag read event that occurred at timetk. This string is ordered by time

such that ifa < b thenta ≤ tb. Assume that the aggregate moves past the reader over

a particular interval of time and that there are no other tagged objects within the read

range at the same time as the aggregate. In this case, all the events for the aggregate

passing by the reader will be contiguous withins(r). To ensure that the aggregate

can be detected unambiguously, the events for the aggregateshould be separated from

other events by some time periodK. Formally, the sequence of read events{ea, . . . ,eb}

belong to a single aggregate if and only ifta − ta−1 > K, tb+1 − tb > K and also iff

ti+1− ti ≤ K for all a≤ i < b.

Laboratory obtained RFID data for a single reader is shown infigure 3. In this

case, the minimum time between aggregates is about 5 seconds, while the maximum
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Figure 3: RFID tag reads for a series of four aggregates passing by a reader.

time between events for the same aggregate was about 200 milliseconds.

The choice of the parameterK must be sufficiently large to ensure that a single

aggregate is not considered to be two separate objects but atthe same time, sufficiently

small so that two aggregates arriving one after the other arenot considered as though

they were a single object. For example,K should be large enough so that if a tag at the

leading edge of the aggregate is seen as soon as the object moves into the field followed

by a tag at the trailing edge being seen when the aggregate leaves the field, then the

aggregate is still seen as a single object. Specifically, foran aggregate of lengthla

travelling at a fixed velocityv past a read field of lengthlr (as shown in figure 4), then

we require that

K > (la + lr)/v.

In some cases, it may be necessary to constrain the flow of aggregates to ensure that

12



lr
d

la

v

Figure 4: Example of two aggregates moving along a conveyor,past an RFID antenna.
The length of the aggregatela, its velocityv, and the size of the antenna’s fieldlr are
related to the minimum allowable distanced between aggregates.

each arrives at the reader a small time after the prior aggregate has moved out of the

way. Specifically, let the distance between two aggregates (from trailing edge of the

first to leading edge of the next) bed, as shown in figure 4. Then an additional con-

straint isK < (d− lr)/v which can be rearranged to give a spacing requirement of

d > Kv+ lr.

Another issue is that of whether it is allowable for the aggregate to stop near the

reader. The main difficulty with this is due to the existence of regions near the reader

where a tag can be placed indefinitely without generating a tag read [14]. For the above

approach to work, it would be necessary to setK to be at least as large as the maximum

time spent stopped.

One reason that it may be necessary to slow down or stop the aggregate as it passes

through the read range is to allow all of the tags to be read. Ifan aggregate involves

many sub-components, and at least some components are tagged, then multiple tags

will be in range of the tag reader simultaneously. Obviouslyif all tags attempt to re-

spond simultaneously then their signals will interfere. For this reason, tag readers and

tags typically employ some form of anti-collision protocol, such as ALOHA or binary

search [6]. ALOHA is one of the simplest mechanisms and relies on each RFID tag

only responding intermittently thus reducing the probability of a tag collision. However
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as the number of tags increase, the length of time needed to bereasonably confident

that all tags have been detected also increases. For a 99.9% confidence level, Finken-

zeller [6] suggests that for HF tags, 0.5 seconds is requiredto see 2 tags, whereas for 8

tags, 2.7 seconds is required. Different anti-collision protocols have different charac-

teristics but all require longer periods to recognise larger numbers of tags.

Given that tag collisions and other environmental factors may result in some tags

in the aggregate being missed, tracking the movement of the aggregate, rather than the

individual object, allows such missed tag reads to be inferred. This is a key benefit of

this approach.

Once aggregates have been discovered, prior knowledge about the characteristics

of the tagged objects can help to infer the aggregate’s likely structure.

3.2 Inferring containment relationships

When a set of objects form an aggregate, it is usually the casethat at least one of the

objects acts as a container. For example, a pallet that supports cases can be considered

to “contain” those cases, in the sense that if the pallet moves, then so do all of the asso-

ciated cases. The converse is not necessarily true. Sometimes a case will be removed

from a pallet. The notion of containment is naturally hierarchical, and so cases may

contain, say, bottles of wine. When the case is removed from the pallet, the bottles

contained within that case will move too.

In any given application, there are typically only a few levels of the containment

hierarchy, and also only a few ways that containment can occur. To infer the likely

containment structure, it is usually sufficient to know the likely containmentlevel of

each type of object. For example, a pallet might be of level 1,a case of level 2, and a

bottle of level 3. Then, in an application where a bottle should never appear on a pallet

on its own, the appearance of a single pallet, a single case and a single bottle allows us

to infer that the bottle is contained by the case and that the case is contained by a pallet.
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When several tagged objects exist at the same level, for example, two cases are

detected but only a single bottle, then it is not possible to infer the location of the

bottle. However it is possible to say that, in the absence of any other information, that

it is equally likely for the bottle to be in either case. This probabilistic representation

of the position of the bottle may not be useful immediately, but if subsequently one

of the cases is removed, and the pallet subsequently passes by a reader, the absence

of the bottle at this stage implies that the bottle is more probably in the case that was

removed.

3.3 World state representation

In order to concisely represent the state of a large number oftracked objects, some

simplification and approximation is necessary. RFID reads are only detecting objects

at a finite set of known locationsL.

Based on experience from previous phases, the location of objects was stored inter-

nally as a mapping from tagged object to location. This mapping can be expressed as

a function f : I → (I ∪L)×Z×Z×ℜ whereI is the set of identified (tagged) objects,

L is the set of locations,Z is the set of non-negative integers, andℜ is a real number.

For a tagged objecti, f (i) gives an ordered tuple(l ,k,t,w), which includes the location

l (which may be another object), an indexk, a time-stampt, and a likelihood estimate

(or weight)w. Allowing objects to act as locations is the mechanism for representing

containment. This approach means that when the aggregate moves, only the bottom

level container location needs to be updated. The indexk is used to represent putting

multiple objects into a single container at the same level ofcontainment. The time-

stampt keeps the time of the most recent update thus allowing old, out-of-date, RFID

data to be discarded. Finally, the likelihood estimatew is used to determine which of

several objects is actually at a location based on the relative frequency of receiving

RFID reads.
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Figure 5: Part of the Petri net transition model.

3.4 Transition model

In its essence, tracking involves detecting when the state (location) of an object changes.

Such change occurs in either through explicit control action (such as a robot picking up

and moving an object) or implicitly (such as objects fallingdown a hopper or flowing

along a conveyor belt).

To estimate the change in state caused by a control action, some form of model is

required. A form of high-level Petri net [16] was used to describe the object tracking

problem examined in this paper. This net represented the possible locations for objects

asplaceswhile actions are represented bytransitions. A tokenin a place represents

an object being at a location. Since objects are identified uniquely, each corresponding

token has a corresponding identity. A portion of the model used is shown in figure 5.

Note that, for conciseness, the token identity is not shown in the diagram. Controlled

transitions, shown as boxes in the diagram, are labelled with the corresponding action.

Uncontrolled transitions, unlabelled and represented as lines rather than boxes, can

occur at any time as long as there is an object at the source place and nothing at the

target place. Requiring that the target place be empty is notusual for Petri nets, however

it is helpful here since tokens correspond to uniquely identified objects, and their order,
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for example in the work-in-process buffer, must be preserved in the model. When a

transition fires, an object is moved from the transition’s input place to its output place.

For example, a typical action in an automated assembly system is for a robotr to

“grab” an item from a hopperh, and this action is denotedgr,h. The places correspond

to possible object locations, such asr for the robot,h1, . . . ,h4 for the four positions in

hopperh, andb1 andb2 for two locations in a box. There are two types of action shown

in the diagram:gr,x being a “grab” fromx to r, dr,x being a “drop” fromr to x where

x∈ {h1, . . . ,h4,b1,b2}.

A key issue with the development of the transition model was the correct handling

of asynchronous updates to the world state from the transition model and RFID sensors.

Network and processing delays can mean that the last few tag reads for an object that

has just been moved away from a reader arrive after the transition model has updated

the location of the object. In early versions of the development of this approach, the

model indicated that an object apparently “jumped” back to its previous location. This

was clearly not the case but the result of processing old RFIDdata after updating the

object state based on an action. To resolve this, RFID reads events are timestamped at

the source and any events older than updates from the transition model are ignored.

Note that actions are not derived from the transition model,but rather come from

a reactive rule system. The interaction of RFID sensor data,the transition model, the

rule system and the world state representation is shown in figure 6.

Generation of control actions is not performed by the transition model, nor by a

planning system based around the transition model. Instead, a reactive rule system

is used. Following an approach suggested by Nilsson [17], the rule system is goal-

oriented and has a recursive structure. Each rule is a combination of a predicate and

an action. The action may either be an individual control action, such as a robotic

movement of an item, or a sub-goal, represented as a set of rules. For example, a sub-

goal might be to pack a box with a gel, a foam and a razor. This then breaks down into
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Rule System

Transition Model

World State
Representation

Environment
Events

State

Effects

ActionsActions

RFID reads

Figure 6: Diagram showing the flow of information within the overall system. An
internal world state representation and a transition modelare used to track the effects of
actions. The world state representation tracks the location of parts first by interpreting
RFID tag reads, but also by interpreting the effect of actions on the current state using
a transition model.

the rules to move the box to the robot and then to move the individual items into the

box. The rules are ordered so that rules about situations close to the goal are presented

first, while situations further from the goal are presented later.

An important feature of the rule system architecture is thatit reacts to notification

of changes to the world state representation rather than sensory signals direct from the

environment. This is, in effect, a state based filter and was found to be important in

ensuring that the overall system functions reliably.

4 Evaluation

To evaluate the approach to object tracking described in theprevious section, it was

applied to the Cambridge laboratory manufacturing system mentioned previously. This

system packs GilletteTM gift boxes. As with previous development phases, it packs to

order rather than to stock. It extends earlier work by both routing parts and boxes to

the appropriate cell and flexibly handling the packing operation of a single box across

several cells. It also removes the finished product from a shuttle and puts it into a

warehouse. The order can be changed at any stage during production, causing the
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Figure 7: Diagram of the gift-box packing system. Solid arrows show direction of flow
of goods on monorail track.

gift box to be repacked in an efficient manner. A schematic diagram of part of the

manufacturing system is shown in figure 7.

To allow the location of parts to be identified, RFID tags are attached to the indi-

vidual items (gel, razors, foam, or deodorant), the boxes, the trays carrying the boxes

and the shuttles. RFID readers are positioned at the base of the work-in-process (WIP)

stacks (see figure 8) and along the monorail track just prior to the gates and docking

stations. Although the original design called for readers prior to every decision point,

some readers were able to be disabled, although some slight changes were required to

the transition model to cope with this.

The experimental work performed in this paper made use of a simple form of HF

tag that uses an anti-collision protocol of transmitting every 100ms +/- 50%, but with

each tag factory set to use a slightly different period. The readers used can perform

some simple filtering (such as filtering recently seen tag messages), however this was
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Figure 8: Work in process buffer for packing robot.
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turned off.

The aim of the experimental evaluation was to assess how manyincorrect RFID-

derived inferences could be removed by superimposing the tracking model on top of

the sensory data.

4.1 Results

A statistical summary of logs produced by experimental runsof the laboratory manu-

facturing system is given in table 1. The total running time shown in the table reflects

an average of about 30 minutes per run. Experimental runs consist of placing several

orders to test the ability of the system to cope with customised demand, and then chang-

ing the orders to demonstrate its ability to react to a changed demand. As shown in the

table, on average about 2000 object movements per run were detected (via RFID data)

or inferred based on explicit control actions or implicit effects (such as items dropping

down in a hopper). For each run, about 50 control actions (such as robotic movement

of objects or monorail gate switch operations) were taken per run.

It is reasonably common for the system to receive a false positive RFID read in

the work-in-process stack (2 per run on average), since the WIP tag readers sometimes

read the item second from the base of the stack as well as the item at the base. This

leads to two items being considered to be at the base of the stack. Roughly half the

time this is resolved when the probability estimate for one of the items reduces below

a threshold (a value of 0.2 was used for this threshold) and isdiscarded. Since only a

single item can fit at the base of the stack, the probability ofan item being at the base

decreases when another item is detected there. In the rest ofthe cases, the uncertainty

was removed after an action was taken to move the item at the base, and subsequently

one of the items was detected elsewhere.

The process of forming an aggregate has proven useful in reducing problems caused

by false negatives for a shuttle tag. Although the shuttle tag is in close proximity with
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Table 1: Accumulated results from 55 demonstration runs
Total running time (minutes) 1649
Object movements detected or inferred 109366
Actions taken 2683
False positives in work-in-process stack 106
False positives pruned by probability threshold 57
False positives pruned after object movement 49
False negatives for shuttle corrected 41
False negatives for shuttle not corrected 2

each reader as it passes by, it is sometimes the case that the shuttle tag is not detected

at all. Since seeing the shuttle tag is used to identify the movement of the shuttle and

therefore to take actions such as switching a gate, it is critical that the shuttle can be

identified. Based on previously gathered aggregate information, it was possible in most

cases to correct for the missed tag and thus to keep operatingwithout intervention. The

two cases where this was not possible occurred when the shuttle tag was missed on the

first occasion that the aggregate was seen.

5 Conclusion

RFID is a mature technology that is currently seeing a rise inprominence, largely due

to its increased use in the retail sector. It has been appliedto manufacturing, however

it is mostly used as a means of establishing the genealogy or history of the end prod-

uct, rather than as a mechanism to support the automation of customisable production.

However increased consumer demand for customisation may drive manufacturers to

adopt RFID as a central part of the manufacturing control loop.

Tracking RFID tags in a stateless manner has been demonstrated to be sufficient for

many applications, however more sophisticated use of RFID will require the integration

of a model-based approach to allow for additional knowledgeof object movements to

be incorporated. In particular, when RFID is used for automatic control, its reliability

can be significantly enhanced by modelling the movement of parts and thus detecting
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some sensor errors. As a side effect, this can also allow a reduction in the number of

RFID readers required and further address the problem of anytemporary failure to read

tags.
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