172 research outputs found

    Platelet ice, the Southern Ocean’s hidden ice: a review

    Get PDF
    Basal melt of ice shelves is not only an important part of Antarctica’s ice-sheet mass budget, but it is also the origin of one of the most peculiar types of sea ice found in the polar oceans: platelet ice. In many regions around coastal Antarctica, tiny ice crystals form and grow in supercooled plumes of Ice Shelf Water, releasing heat into the surrounding ocean. They usually rise towards the surface, eventually becoming trapped under an ice shelf as marine ice. Frequently, masses of those crystals are advected out of the ice-shelf cavity, and accumulate below a solid sea-ice cover to form a semiconsolidated layer. When the overlying sea ice grows into this so-called sub-ice platelet layer, the loose crystals are consolidated, adding additional thickness to the sea ice. These phenomena are generally referred to as platelet ice, although confusion about the terminology is widespread in the literature. The presence of platelet ice has a profound impact on sea-ice properties and processes in several regions of Antarctica, with numerous implications for the local polar marine biosphere. Most notably, sub-ice platelet layers provide a stable, sheltered, nutrient- and food-rich habitat which usually results in a highly productive and uniquely adapted ecosystem. It has also been hypothesised that platelet ice may be an indicator of the state of an ice shelf, although comprehensive time series are limited to the Ross Sea. This paper clears up the terminology by providing exact definitions of the relevant terms.We review platelet-ice formation, observational methods as well as geographical and seasonal occurrence. The physical properties and ecological implications are merged in a way understandable for physicists and biologists alike, to lay the foundation for the interdisciplinary research that is necessary to tackle the current knowledge gaps

    Cumulative Load of Depressive Symptoms Is Associated With Cortisol Awakening Response in Very Old Age.

    Get PDF
    This study examined links of cumulative and present depressive symptoms with present cortisol diurnal profiles in oldest-old adults. Five waves of data from 50 older adults (M age = 89.05 years; 64% women) who participated in the Australian Longitudinal Study of Ageing were used to combine 15 years of longitudinal data with seven cortisol samples per day over a one-week period. Findings revealed that individuals with more past depressive symptoms showed a lower cortisol awakening response (CAR). Interestingly, present depressive symptoms were not associated with the CAR. These findings inform our understanding of distal health factors in very old age

    An Introduction to Gas Accretion onto Galaxies

    Full text link
    Evidence for gas accretion onto galaxies can be found throughout the universe. In this chapter, I summarize the direct and indirect signatures of this process and discuss the primary sources. The evidence for gas accretion includes the star formation rates and metallicities of galaxies, the evolution of the cold gas content of the universe with time, numerous indirect indicators for individual galaxies, and a few direct detections of inflow. The primary sources of gas accretion are the intergalactic medium, satellite gas and feedback material. There is support for each of these sources from observations and simulations, but the methods with which the fuel ultimately settles in to form stars remain murky.Comment: 14 pages, 5 figures, Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice

    Get PDF
    Wind-driven redistribution of snow on sea ice alters its topography and microstructure, yet the impact of these processes on radar signatures is poorly understood. Here, we examine the effects of snow redistribution over Arctic sea ice on radar waveforms and backscatter signatures obtained from a surface-based, fully polarimetric Ka- and Ku-band radar at incidence angles between 0∘ (nadir) and 50∘. Two wind events in November 2019 during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition are evaluated. During both events, changes in Ka- and Ku-band radar waveforms and backscatter coefficients at nadir are observed, coincident with surface topography changes measured by a terrestrial laser scanner. At both frequencies, redistribution caused snow densification at the surface and the uppermost layers, increasing the scattering at the air–snow interface at nadir and its prevalence as the dominant radar scattering surface. The waveform data also detected the presence of previous air–snow interfaces, buried beneath newly deposited snow. The additional scattering from previous air–snow interfaces could therefore affect the range retrieved from Ka- and Ku-band satellite altimeters. With increasing incidence angles, the relative scattering contribution of the air–snow interface decreases, and the snow–sea ice interface scattering increases. Relative to pre-wind event conditions, azimuthally averaged backscatter at nadir during the wind events increases by up to 8 dB (Ka-band) and 5 dB (Ku-band). Results show substantial backscatter variability within the scan area at all incidence angles and polarizations, in response to increasing wind speed and changes in wind direction. Our results show that snow redistribution and wind compaction need to be accounted for to interpret airborne and satellite radar measurements of snow-covered sea ice

    Wind redistribution of snow impacts the Ka- and Ku-band radar signatures of Arctic sea ice

    Get PDF
    Wind-driven redistribution of snow on sea ice alters its topography and microstructure, yet the impact of these processes on radar signatures is poorly understood. Here, we examine the effects of snow redistribution over Arctic sea ice on radar waveforms and backscatter signatures obtained from a surface-based, fully polarimetric Ka- and Ku-band radar at incidence angles between 0∘ (nadir) and 50∘. Two wind events in November 2019 during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition are evaluated. During both events, changes in Ka- and Ku-band radar waveforms and backscatter coefficients at nadir are observed, coincident with surface topography changes measured by a terrestrial laser scanner. At both frequencies, redistribution caused snow densification at the surface and the uppermost layers, increasing the scattering at the air–snow interface at nadir and its prevalence as the dominant radar scattering surface. The waveform data also detected the presence of previous air–snow interfaces, buried beneath newly deposited snow. The additional scattering from previous air–snow interfaces could therefore affect the range retrieved from Ka- and Ku-band satellite altimeters. With increasing incidence angles, the relative scattering contribution of the air–snow interface decreases, and the snow–sea ice interface scattering increases. Relative to pre-wind event conditions, azimuthally averaged backscatter at nadir during the wind events increases by up to 8 dB (Ka-band) and 5 dB (Ku-band). Results show substantial backscatter variability within the scan area at all incidence angles and polarizations, in response to increasing wind speed and changes in wind direction. Our results show that snow redistribution and wind compaction need to be accounted for to interpret airborne and satellite radar measurements of snow-covered sea ice

    Transcriptional dysregulation of Interferome in experimental and human Multiple Sclerosis

    Get PDF
    Recent evidence indicates that single multiple sclerosis (MS) susceptibility genes involved in interferon (IFN) signaling display altered transcript levels in peripheral blood of untreated MS subjects, suggesting that responsiveness to endogenous IFN is dysregulated during neuroinflammation. To prove this hypothesis we exploited the systematic collection of IFN regulated genes (IRG) provided by the Interferome database and mapped Interferome changes in experimental and human MS. Indeed, central nervous system tissue and encephalitogenic CD4 T cells during experimental autoimmune encephalomyelitis were characterized by massive changes in Interferome transcription. Further, the analysis of almost 500 human blood transcriptomes showed that (i) several IRG changed expression at distinct MS stages with a core of 21 transcripts concordantly dysregulated in all MS forms compared with healthy subjects; (ii) 100 differentially expressed IRG were validated in independent case-control cohorts; and (iii) 53 out of 100 dysregulated IRG were targeted by IFN-beta treatment in vivo. Finally, ex vivo and in vitro experiments established that IFN-beta administration modulated expression of two IRG, ARRB1 and CHP1, in immune cells. Our study confirms the impairment of Interferome in experimental and human MS, and describes IRG signatures at distinct disease stages which can represent novel therapeutic targets in MS

    The outlook of building information modeling for sustainable development

    Get PDF
    As human needs evolve, information technologies and natural environments require a wider perspective of sustainable development, especially when examining the built environment that impacts the central of social-ecological systems. The objectives of the paper are (a) to review the status and development of building information modeling (BIM) in regards to the sustainable development in the built environment, and (b) to develop a future outlook framework that promotes BIM in sustainable development. Seven areas of sustainability were classified to analyze forty-four BIM guidelines and standards. This review examines the use of BIM in sustainable development, focusing primarily on certain areas of sustainability, such as project development, design, and construction. The developed framework describes the need for collaboration with the multiple disciplines for the future adoption and use of BIM for the sustainable development. It also considers the integration between “BIM and green assessment criteria”; and “BIM and renewable energy” to address the shortcomings of the standards and guidelines

    International consensus conference recommendations on ultrasound education for undergraduate medical students

    Get PDF
    Objectives: The purpose of this study is to provide expert consensus recommendations to establish a global ultrasound curriculum for undergraduate medical students. Methods: 64 multi-disciplinary ultrasound experts from 16 countries, 50 multi-disciplinary ultrasound consultants, and 21 medical students and residents contributed to these recommendations. A modified Delphi consensus method was used that included a systematic literature search, evaluation of the quality of literature by the GRADE system, and the RAND appropriateness method for panel judgment and consensus decisions. The process included four in-person international discussion sessions and two rounds of online voting. Results: A total of 332 consensus conference statements in four curricular domains were considered: (1) curricular scope (4 statements), (2) curricular rationale (10 statements), (3) curricular characteristics (14 statements), and (4) curricular content (304 statements). Of these 332 statements, 145 were recommended, 126 were strongly recommended, and 61 were not recommended. Important aspects of an undergraduate ultrasound curriculum identified include curricular integration across the basic and clinical sciences and a competency and entrustable professional activity-based model. The curriculum should form the foundation of a life-long continuum of ultrasound education that prepares students for advanced training and patient care. In addition, the curriculum should complement and support the medical school curriculum as a whole with enhanced understanding of anatomy, physiology, pathophysiological processes and clinical practice without displacing other important undergraduate learning. The content of the curriculum should be appropriate for the medical student level of training, evidence and expert opinion based, and include ongoing collaborative research and development to ensure optimum educational value and patient care. Conclusions: The international consensus conference has provided the first comprehensive document of recommendations for a basic ultrasound curriculum. The document reflects the opinion of a diverse and representative group of international expert ultrasound practitioners, educators, and learners. These recommendations can standardize undergraduate medical student ultrasound education while serving as a basis for additional research in medical education and the application of ultrasound in clinical practice

    Dysregulated autoantibodies targeting vaso- and immunoregulatory receptors in Post COVID Syndrome correlate with symptom severity

    Get PDF
    Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS
    • 

    corecore