131 research outputs found

    AMST: Alignment to Median Smoothed Template for Focused Ion Beam Scanning Electron Microscopy Image Stacks

    Get PDF
    Alignment of stacks of serial images generated by focused ion Beam Scanning electron Microscopy (FIB-SEM) is generally performed using translations only, either through slice-by-slice alignments with SIFT or alignment by template matching. However, limitations of these methods are two-fold: the introduction of a bias along the dataset in the z-direction which seriously alters the morphology of observed organelles and a missing compensation for pixel size variations inherent to the image acquisition itself. These pixel size variations result in local misalignments and jumps of a few nanometers in the image data that can compromise downstream image analysis. We introduce a novel approach which enables affine transformations to overcome local misalignments while avoiding the danger of introducing a scaling, rotation or shearing trend along the dataset. Our method first computes a template dataset with an alignment method restricted to translations only. This pre-aligned dataset is then smoothed selectively along the z-axis with a median filter, creating a template to which the raw data is aligned using affine transformations. Our method was applied to FIB-SEM datasets and showed clear improvement of the alignment along the z-axis resulting in a significantly more accurate automatic boundary segmentation using a convolutional neural network

    Sleep spindle density predicts the effect of prior knowledge on memory consolidation

    Get PDF
    Information that relates to a prior knowledge schema is remembered better and consolidates more rapidly than information that does not. Another factor that influences memory consolidation is sleep and growing evidence suggests that sleep-related processing is important for integration with existing knowledge. Here, we perform an examination of how sleep-related mechanisms interact with schema-dependent memory advantage. Participants first established a schema over 2 weeks. Next, they encoded new facts, which were either related to the schema or completely unrelated. After a 24 h retention interval, including a night of sleep, which we monitored with polysomnography, participants encoded a second set of facts. Finally, memory for all facts was tested in a functional magnetic resonance imaging scanner. Behaviorally, sleep spindle density predicted an increase of the schema benefit to memory across the retention interval. Higher spindle densities were associated with reduced decay of schema-related memories. Functionally, spindle density predicted increased disengagement of the hippocampus across 24 h for schema-related memories only. Together, these results suggest that sleep spindle activity is associated with the effect of prior knowledge on memory consolidation. SIGNIFICANCE STATEMENT Episodic memories are gradually assimilated into long-term memory and this process is strongly influenced by sleep. The consolidation of new information is also influenced by its relationship to existing knowledge structures, or schemas, but the role of sleep in such schema-related consolidation is unknown. We show that sleep spindle density predicts the extent to which schemas influence the consolidation of related facts. This is the first evidence that sleep is associated with the interaction between prior knowledge and long-term memory formation

    Numerical optimization of spherical variable-line-spacing grating X-ray spectrometers

    Get PDF
    Operation of an X-ray spectrometer based on a spherical variable-line-spacing grating is analyzed using dedicated ray-tracing software allowing fast optimization of the grating parameters and spectrometer geometry

    Effective Immunological Guidance of Genetic Analyses Including Exome Sequencing in Patients Evaluated for Hemophagocytic Lymphohistiocytosis

    Get PDF
    We report our experience in using flow cytometry-based immunological screening prospectively as a decision tool for the use of genetic studies in the diagnostic approach to patients with hemophagocytic lymphohistiocytosis (HLH). We restricted genetic analysis largely to patients with abnormal immunological screening, but included whole exome sequencing (WES) for those with normal findings upon Sanger sequencing. Among 290 children with suspected HLH analyzed between 2010 and 2014 (including 17 affected, but asymptomatic siblings), 87/162 patients with "full" HLH and 79/111 patients with "incomplete/atypical" HLH had normal immunological screening results. In 10 patients, degranulation could not be tested. Among the 166 patients with normal screening, genetic analysis was not performed in 107 (all with uneventful follow-up), while 154 single gene tests by Sanger sequencing in the remaining 59 patients only identified a single atypical CHS patient. Flow cytometry correctly predicted all 29 patients with FHL-2, XLP1 or 2. Among 85 patients with defective NK degranulation (including 13 asymptomatic siblings), 70 were Sanger sequenced resulting in a genetic diagnosis in 55 (79%). Eight patients underwent WES, revealing mutations in two known and one unknown cytotoxicity genes and one metabolic disease. FHL3 was the most frequent genetic diagnosis. Immunological screening provided an excellent decision tool for the need and depth of genetic analysis of HLH patients and provided functionally relevant information for rapid patient classification, contributing to a significant reduction in the time from diagnosis to transplantation in recent years

    A canine model of Cohen syndrome: Trapped Neutrophil Syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trapped Neutrophil Syndrome (TNS) is a common autosomal recessive neutropenia in Border collie dogs.</p> <p>Results</p> <p>We used a candidate gene approach and linkage analysis to show that the causative gene for TNS is <it>VPS13B</it>. We chose <it>VPS13B </it>as a candidate because of similarities in clinical signs between TNS and Cohen syndrome, in human, such as neutropenia and a typical facial dysmorphism. Linkage analysis using microsatellites close to <it>VPS13B </it>showed positive linkage of the region to TNS. We sequenced each of the 63 exons of <it>VPS13B </it>in affected and control dogs and found that the causative mutation in Border collies is a 4 bp deletion in exon 19 of the largest transcript that results in premature truncation of the protein. Cohen syndrome patients present with mental retardation in 99% of cases, but learning disabilities featured in less than half of TNS affected dogs. It has been implied that loss of the alternate transcript of <it>VPS13B </it>in the human brain utilising an alternate exon, 28, may cause mental retardation. Mice cannot be used to test this hypothesis as they do not express the alternate exon. We show that dogs do express alternate transcripts in the brain utilising an alternate exon homologous to human exon 28.</p> <p>Conclusion</p> <p>Dogs can be used as a model organism to explore the function of the alternately spliced transcript of VPS13B in the brain. TNS in Border collies is the first animal model for Cohen syndrome and can be used to study the disease aetiology.</p

    Time- but not sleep-dependent consolidation promotes the emergence of cross-modal conceptual representations

    Get PDF
    Conceptual knowledge about objects comprises a diverse set of multi-modal and generalisable information, which allows us to bring meaning to the stimuli in our environment. The formation of conceptual representations requires two key computational challenges: integrating information from different sensory modalities and abstracting statistical regularities across exemplars. Although these processes are thought to be facilitated by offline memory consolidation, investigations into how cross-modal concepts evolve offline, over time, rather than with continuous category exposure are still missing. Here, we aimed to mimic the formation of new conceptual representations by reducing this process to its two key computational challenges and exploring its evolution over an offline retention period. Participants learned to distinguish between members of two abstract categories based on a simple one-dimensional visual rule. Underlying the task was a more complex hidden indicator of category structure, which required the integration of information across two sensory modalities. In two experiments we investigated the impact of time- and sleep-dependent consolidation on category learning. Our results show that offline memory consolidation facilitated cross-modal category learning. Surprisingly, consolidation across wake, but not across sleep showed this beneficial effect. By demonstrating the importance of offline consolidation the current study provided further insights into the processes that underlie the formation of conceptual representations
    • 

    corecore