1,884 research outputs found

    ADDITIVE AND NONADDITIVE EFFECTS OF HERBIVORY AND COMPETITION ON TREE SEEDLING MORTALITY, GROWTH, AND ALLOCATION

    Get PDF
    The interaction between simulated cotyledon herbivory and interspecific competition was studied in a greenhouse experiment using two species of trees, Acer rubrum and Quercus palustris, which commonly invade abandoned agricultural fields. Herbivory treatments were applied as a gradient of cotyledon removal for A. rubrum with 0, 25, 50, 75, and 100% of cotyledon tissue removed. Cotyledons from Q. palustris were clipped and removed (control, early, and late removal) to create a gradient of seed reserve availability. The competition treatment consisted of plugs of old-field vegetation that filled the pots with perennial cover. Mortality of seedlings was higher with competition. There was a significant interaction between herbivory and competition with the highest mortality occurring with competition at the highest intensity of herbivory in both species. Herbivory reduced biomass for Q. palustris only, while competition reduced biomass in both species. Neither species showed an interaction between herbivory and competition for growth. There was a significant interaction between herbivory and competition on allocation patterns for both species, with greater allocation to roots with competition at the highest intensity of herbivory. This study demonstrates the potential for cotyledon herbivory and competition to interact, altering the invasion of tree seedlings into abandoned agricultural land

    Ergodicity, Decisions, and Partial Information

    Full text link
    In the simplest sequential decision problem for an ergodic stochastic process X, at each time n a decision u_n is made as a function of past observations X_0,...,X_{n-1}, and a loss l(u_n,X_n) is incurred. In this setting, it is known that one may choose (under a mild integrability assumption) a decision strategy whose pathwise time-average loss is asymptotically smaller than that of any other strategy. The corresponding problem in the case of partial information proves to be much more delicate, however: if the process X is not observable, but decisions must be based on the observation of a different process Y, the existence of pathwise optimal strategies is not guaranteed. The aim of this paper is to exhibit connections between pathwise optimal strategies and notions from ergodic theory. The sequential decision problem is developed in the general setting of an ergodic dynamical system (\Omega,B,P,T) with partial information Y\subseteq B. The existence of pathwise optimal strategies grounded in two basic properties: the conditional ergodic theory of the dynamical system, and the complexity of the loss function. When the loss function is not too complex, a general sufficient condition for the existence of pathwise optimal strategies is that the dynamical system is a conditional K-automorphism relative to the past observations \bigvee_n T^n Y. If the conditional ergodicity assumption is strengthened, the complexity assumption can be weakened. Several examples demonstrate the interplay between complexity and ergodicity, which does not arise in the case of full information. Our results also yield a decision-theoretic characterization of weak mixing in ergodic theory, and establish pathwise optimality of ergodic nonlinear filters.Comment: 45 page

    Spatiotemporal complexity of the universe at subhorizon scales

    Full text link
    This is a short note on the spatiotemporal complexity of the dynamical state(s) of the universe at subhorizon scales (up to 300 Mpc). There are reasons, based mainly on infrared radiative divergences, to believe that one can encounter a flicker noise in the time domain, while in the space domain, the scaling laws are reflected in the (multi)fractal distribution of galaxies and their clusters. There exist recent suggestions on a unifying treatment of these two aspects within the concept of spatiotemporal complexity of dynamical systems driven out of equilibrium. Spatiotemporal complexity of the subhorizon dynamical state(s) of the universe is a conceptually nice idea and may lead to progress in our understanding of the material structures at large scalesComment: references update

    PROBABILITY OF TREE SEEDLING ESTABLISHMENT CHANGES ACROSS A FOREST–OLD FIELD EDGE GRADIENT

    Get PDF
    Forest edges affect many aspects of plant communities, causing changes in microclimate, species composition, and community structure. However, the direct role of edges in regulating forest regeneration is relatively unknown. The pattern of tree establishment across a forest–old field edge was experimentally examined to determine the response of three tree species to the edge gradient. We placed 100 1-m2 plots in a 90 3 90 m grid that began 30 m inside the forest, extended across the edge, and ended at 60 m into the old field. Into each plot, we planted seeds of Acer rubrum, Acer saccharum, and Quercus palustris. Emergence increased with distance into the field for both A. saccharum and Q. palustris. Emergence for A. rubrum increased from forest to field, reaching a maximum near 20 m into the field, and then declined with further distance. Nearly all A. rubrum seedlings died shortly after emergence. Survival of A. saccharum increased with distance into the old field, while survivorship of Q. palustris did not respond to the edge gradient. Establishment probabilities increased with distance into the old field for both A. saccharum and Q. palustris. Growth of Q. palustris and allocation patterns of A. saccharum also varied across the edge gradient. These results suggest that edges have complex, speciesspecific effects on tree establishment and growth that can influence the spatial pattern and species composition of regenerating forests

    Acidification increases microbial polysaccharide degradation in the ocean

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 1615–1624, doi:10.5194/bg-7-1615-2010.With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular α- and β-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to reduce carbon export and to enhance the respiratory CO2 production in the future ocean.This study was supported by the Helmholtz Association (HZ-NG-102) and the Belgian Science Policy (SD/CS/03)

    Part Three: Restoring Urban Nature: Projects and Process

    Get PDF
    Part Three: Restoring Urban Nature: Projects and Process -- Restoring Urban Ecology: The New York–New Jersey Metropolitan Area Experience / Steven E. Clemants and Steven N. Handel -- Urban Watershed Management: The Milwaukee River Experience / Laurin N. Sievert -- Green Futures for Industrial Brownfields / Christopher A. De Sousa -- Ecological Citizenship: The Democratic Promise of Restoration / Andrew Light

    Effect of Short Term Exercise and High Fat Diet on Skeletal Muscle miR133a

    Get PDF
    Micro RNAs (miR) are small non-coding RNA that regulate gene expression at the post-transcriptional level. miR133a is abundant in cardiac and skeletal muscle. In skeletal muscle, miR133a is best known for its regulatory role in myogenesis and differentiation. Nie (2016) found that muscle miR133a expression increased after acute exercise and with 12w of treadmill exercise training in mice. Knockdown of miR133a in transgenic mice resulted in blunted skeletal muscle mitochondrial biogenesis and function in response to exercise training (Nie, 2016) suggesting a role for miR133a in regulating the normal skeletal muscle metabolic adaptive response to exercise. Among other miR, skeletal muscle miR133a is reported as downregulated in insulin-resistant muscle. Insulin resistance in mice fed a high-fat diet is detectable after 3 days on diet (Lee, 2011). In this study, voluntary, rather than forced, exercise was employed to test whether miR133a expression is regulated early in the adoption of increased daily physical activity

    Seasonal variation in serum metabolites of northern European dogs

    Get PDF
    Background Metabolic profiling identifies seasonal variance of serum metabolites in humans. Despite the presence of seasonal disease patterns, no studies have assessed whether serum metabolites vary seasonally in dogs. Hypothesis There is seasonal variation in the serum metabolite profiles of healthy dogs. Animals Eighteen healthy, client-owned dogs. Methods A prospective cohort study. Serum metabolomic profiles were assessed monthly in 18 healthy dogs over a 12-month period. Metabolic profiling was conducted using a canine-specific proton nuclear magnetic resonance spectroscopy platform, and the effects of seasonality were studied for 98 metabolites using a cosinor model. Seasonal component was calculated, which describes the seasonal variation of each metabolite. Results We found no evidence of seasonal variation in 93 of 98 metabolites. Six metabolites had statistically significant seasonal variance, including cholesterol (mean 249 mg/dL [6.47 mmol/L] with a seasonal component amplitude of 9 mg/dL [0.23 mmol/L]; 95% confidence interval [CI] 6-13 mg/dL [0.14-0.33 mmol/L], P < .008), with a peak concentration of 264 mg/dL (6.83 mmol/L) in June and trough concentration of 236 mg/dL (6.12 mmol/L) in December. In contrast, there was a significantly lower concentration of lactate (mean 20 mg/dL [2.27 mmol/L] with a seasonal component amplitude of 4 mg/dL [0.42 mmol/L]; 95% CI 2-6 mg/dL [0.22-0.62 mmol/L], P < .001) during the summer months compared to the winter months, with a peak concentration of 26 mg/dL (2.9 mmol/L) in February and trough concentration of 14 mg/dL (1.57 mmol/L) in July. Conclusions and Clinical Importance We found no clear evidence that seasonal reference ranges need to be established for serum metabolites of dogs.Peer reviewe

    Tur\'an numbers for Ks,tK_{s,t}-free graphs: topological obstructions and algebraic constructions

    Full text link
    We show that every hypersurface in Rs×Rs\R^s\times \R^s contains a large grid, i.e., the set of the form S×TS\times T, with S,TRsS,T\subset \R^s. We use this to deduce that the known constructions of extremal K2,2K_{2,2}-free and K3,3K_{3,3}-free graphs cannot be generalized to a similar construction of Ks,sK_{s,s}-free graphs for any s4s\geq 4. We also give new constructions of extremal Ks,tK_{s,t}-free graphs for large tt.Comment: Fixed a small mistake in the application of Proposition

    Serological Patterns of Brucellosis, Leptospirosis and Q Fever in Bos indicus Cattle in Cameroon

    Get PDF
    Brucellosis, leptospirosis and Q fever are important infections of livestock causing a range of clinical conditions including abortions and reduced fertility. In addition, they are all important zoonotic infections infecting those who work with livestock and those who consume livestock related products such as milk, producing non-specific symptoms including fever, that are often misdiagnosed and that can lead to severe chronic disease. This study used banked sera from the Adamawa Region of Cameroon to investigate the seroprevalences and distributions of seropositive animals and herds. A classical statistical and a multi-level prevalence modelling approach were compared. The unbiased estimates were 20% of herds were seropositive for Brucella spp. compared to 95% for Leptospira spp. and 68% for Q fever. The within-herd seroprevalences were 16%, 35% and 39% respectively. There was statistical evidence of clustering of seropositive brucellosis and Q fever herds. The modelling approach has the major advantage that estimates of seroprevalence can be adjusted for the sensitivity and specificity of the diagnostic test used and the multi-level structure of the sampling. The study found a low seroprevalence of brucellosis in the Adamawa Region compared to a high proportion of leptospirosis and Q fever seropositive herds. This represents a high risk to the human population as well as potentially having a major impact on animal health and productivity in the region
    corecore