96 research outputs found

    Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation

    Get PDF
    Influenza A virus pandemics and emerging anti-viral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and lung inflammation. We investigated whether the primary enzymatic source of inflammatory cell ROS (reactive oxygen species), Nox2-containing NADPH oxidase, is a novel pharmacological target against the lung inflammation caused by influenza A viruses. Male WT (C57BL/6) and Nox2−/y mice were infected intranasally with low pathogenicity (X-31, H3N2) or higher pathogenicity (PR8, H1N1) influenza A virus. Viral titer, airways inflammation, superoxide and peroxynitrite production, lung histopathology, pro-inflammatory (MCP-1) and antiviral (IL-1β) cytokines/chemokines, CD8+ T cell effector function and alveolar epithelial cell apoptosis were assessed. Infection of Nox2−/y mice with X-31 virus resulted in a significant reduction in viral titers, BALF macrophages, peri-bronchial inflammation, BALF inflammatory cell superoxide and lung tissue peroxynitrite production, MCP-1 levels and alveolar epithelial cell apoptosis when compared to WT control mice. Lung levels of IL-1β were ∼3-fold higher in Nox2−/y mice. The numbers of influenza-specific CD8+DbNP366+ and DbPA224+ T cells in the BALF and spleen were comparable in WT and Nox2−/y mice. In vivo administration of the Nox2 inhibitor apocynin significantly suppressed viral titer, airways inflammation and inflammatory cell superoxide production following infection with X-31 or PR8. In conclusion, these findings indicate that Nox2 inhibitors have therapeutic potential for control of lung inflammation and damage in an influenza strain-independent manner

    Location of the CD8 T Cell Epitope within the Antigenic Precursor Determines Immunogenicity and Protection against the Toxoplasma gondii Parasite

    Get PDF
    CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity and immunodominance hierarchy of parasite antigens are not well understood.Here, using genetically modified parasites, we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast, immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular parasite antigen and for eliciting protective CD8 T cells. © 2013 Feliu et al

    Aberrant Cell Cycle and Apoptotic Changes Characterise Severe Influenza A Infection – A Meta-Analysis of Genomic Signatures in Circulating Leukocytes

    Get PDF
    Influenza A infection is a global disease that has been responsible for four pandemics over the last one hundred years. However, it remains poorly understood as to why some infected individuals succumb to life threatening complications whilst others recover and are relatively unaffected. Using gene-expression analysis of circulating leukocytes, here we show that the progression towards severe influenza A infection is characterised by an abnormal transcriptional reprogramming of cell cycle and apoptosis pathways. In severely infected humans, leukocyte gene-expression profiles display opposing cell cycle activities; an increased aberrant DNA replication in the G1/S phase yet delayed progression in the G2/M phase. In mild infection, cell cycle perturbations are fewer and are integrated with an efficient apoptotic program. Importantly, the loss of integration between cell cycle perturbations and apoptosis marks the transition from a mild viral illness to a severe, life threatening infection. Our findings suggest that circulating immune cells may play a significant role in the evolution of the host response. Further study may reveal alternative host response factors previously unrecognized in the current disease model of influenza

    Defining the expression hierarchy of latent T-cell epitopes in Epstein-Barr virus infection with TCR-like antibodies

    Get PDF
    Epstein-Barr virus (EBV) is a gamma herpesvirus that causes a life-long latent infection in human hosts. The latent gene products LMP1, LMP2A and EBNA1 are expressed by EBV-associated tumors and peptide epitopes derived from these can be targeted by CD8 Cytotoxic T-Lymphocyte (CTL) lines. Whilst CTL-based methodologies can be utilized to infer the presence of specific latent epitopes, they do not allow a direct visualization or quantitation of these epitopes. Here, we describe the characterization of three TCR-like monoclonal antibodies (mAbs) targeting the latent epitopes LMP1[subscript 125–133], LMP2A[subscript 426–434] or EBNA1[subscript 562–570] in association with HLA-A0201. These are employed to map the expression hierarchy of endogenously generated EBV epitopes. The dominance of EBNA1[subscript 562–570] in association with HLA-A0201 was consistently observed in cell lines and EBV-associated tumor biopsies. These data highlight the discordance between MHC-epitope density and frequencies of associated CTL with implications for cell-based immunotherapies and/or vaccines for EBV-associated disease

    Early Priming Minimizes the Age-Related Immune Compromise of CD8+ T Cell Diversity and Function

    Get PDF
    The elderly are particularly susceptible to influenza A virus infections, with increased occurrence, disease severity and reduced vaccine efficacy attributed to declining immunity. Experimentally, the age-dependent decline in influenza-specific CD8+ T cell responsiveness reflects both functional compromise and the emergence of ‘repertoire holes’ arising from the loss of low frequency clonotypes. In this study, we asked whether early priming limits the time-related attrition of immune competence. Though primary responses in aged mice were compromised, animals vaccinated at 6 weeks then challenged >20 months later had T-cell responses that were normal in magnitude. Both functional quality and the persistence of ‘preferred’ TCR clonotypes that expand in a characteristic immunodominance hierarchy were maintained following early priming. Similar to the early priming, vaccination at 22 months followed by challenge retained a response magnitude equivalent to young mice. However, late priming resulted in reduced TCRβ diversity in comparison with vaccination earlier in life. Thus, early priming was critical to maintaining individual and population-wide TCRβ diversity. In summary, early exposure leads to the long-term maintenance of memory T cells and thus preserves optimal, influenza-specific CD8+ T-cell responsiveness and protects against the age-related attrition of naïve T-cell precursors. Our study supports development of vaccines that prime CD8+ T-cells early in life to elicit the broadest possible spectrum of CD8+ T-cell memory and preserve the magnitude, functionality and TCR usage of responding populations. In addition, our study provides the most comprehensive analysis of the aged (primary, secondary primed-early and secondary primed-late) TCR repertoires published to date

    Epitope Density Influences CD8+ Memory T Cell Differentiation

    Get PDF
    The generation of long-lived memory T cells is critical for successful vaccination but the factors controlling their differentiation are still poorly defined. We tested the hypothesis that the strength of T cell receptor (TCR) signaling contributed to memory CD8(+) T cell generation.We manipulated the density of antigenic epitope presented by dendritic cells to mouse naïve CD8(+) T cells, without varying TCR affinity. Our results show that a two-fold decrease in antigen dose selectively affects memory CD8(+) T cell generation without influencing T cell expansion and acquisition of effector functions. Moreover, we show that low antigen dose alters the duration of the interaction between T cells and dendritic cells and finely tunes the expression level of the transcription factors Eomes and Bcl6. Furthermore, we demonstrate that priming with higher epitope density results in a 2-fold decrease in the expression of Neuron-derived orphan nuclear receptor 1 (Nor-1) and this correlates with a lower level of conversion of Bcl-2 into a pro-apoptotic molecule and an increased number of memory T cells.Our results show that the amount of antigen encountered by naïve CD8(+) T cells following immunization with dendritic cells does not influence the generation of functional effector CD8(+) T cells but rather the number of CD8(+) memory T cells that persist in the host. Our data support a model where antigenic epitope density sensed by CD8(+) T cells at priming influences memory generation by modulating Bcl6, Eomes and Nor-1 expression

    Matrix Metalloprotease 9 Mediates Neutrophil Migration into the Airways in Response to Influenza Virus-Induced Toll-Like Receptor Signaling

    Get PDF
    The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP) 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR) signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88−/− airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes

    Subdominant/Cryptic CD8 T Cell Epitopes Contribute to Resistance against Experimental Infection with a Human Protozoan Parasite

    Get PDF
    During adaptive immune response, pathogen-specific CD8+ T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8+ T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8+ T cells of H-2a infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8+ T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8+ T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development

    PAD4-Mediated Neutrophil Extracellular Trap Formation Is Not Required for Immunity against Influenza Infection

    Get PDF
    During an inflammatory response, neutrophils migrate to the site of infection where they can kill invading pathogens by phagocytosis, secretion of anti-microbicidal mediators or the release of neutrophil extracellular traps (NETs). NETs are specialized anti-microbial structures comprised of decondensed chromatin decorated with microbicidal agents. Increased amount of NETs have been found in patients suffering from the chronic lung inflammatory disease cystic fibrosis, correlating with increased severity of pulmonary obstruction. Furthermore, acute lung inflammation during influenza A infection is characterized by a massive influx of neutrophils into the lung. The role of NETs during virus-mediated lung inflammation is unknown. Peptidylarginine deiminase 4 (PAD4)-mediated deimination of histone H3 and H4 is required for NET formation. Therefore, we generated a PAD4-deficient mouse strain that has a striking inability to form NETs. These mice were infected with influenza A/WSN, and the disease was monitored at the level of leukocytic lung infiltration, lung pathology, viral replication, weight loss and mortality. PAD4 KO fared comparable to WT mice in all the parameters tested, but they displayed slight but statistically different weight loss kinetics during infection that was not reflected in enhanced survival. Overall, we conclude that PAD4-mediated NET formation is dispensable in a mouse model of influenza A infection
    corecore