541 research outputs found

    Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23Ma

    Get PDF
    The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6±2.8m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points

    Deglacial evolution of regional Antarctic climate and Southern Ocean conditions in transient climate simulations

    Get PDF
    Constraining Antarctica's climate evolution since the end of the Last Glacial Maximum (∼18&thinsp;ka) remains a key challenge, but is important for accurately projecting future changes in Antarctic ice sheet mass balance. Here we perform a spatial and temporal analysis of two transient deglacial climate simulations, one using a fully coupled GCM (TraCE-21ka) and one using an intermediate complexity model (LOVECLIM DGns), to determine regional differences in deglacial climate evolution and identify the main strengths and limitations of the models in terms of climate variables that impact ice sheet mass balance. The greatest continental surface warming is observed over the continental margins in both models, with strong correlations between surface albedo, sea ice coverage, and surface air temperature along the coasts, as well as regions with the greatest decrease in ice surface elevation in TraCE-21ka. Accumulation–temperature scaling relationships are fairly linear and constant in the continental interior, but exhibit higher variability in the early to mid-Holocene over coastal regions. Circum-Antarctic coastal ocean temperatures at grounding line depths are highly sensitive to the meltwater forcings prescribed in each simulation, which are applied in different ways due to limited paleo-constraints. Meltwater forcing associated with the Meltwater Pulse 1A (MWP1A) event results in subsurface warming that is most pronounced in the Amundsen and Bellingshausen Sea sector in both models. Although modelled centennial-scale rates of temperature and accumulation change are reasonable, clear model–proxy mismatches are observed with regard to the timing and duration of the Antarctic Cold Reversal (ACR) and Younger Dryas–early Holocene warming, which may suggest model bias in large-scale ocean circulation, biases in temperature reconstructions from proxy records, or that the MWP1A and 1B events are inadequately represented in these simulations. The incorporation of dynamic ice sheet models in future transient climate simulations could aid in improving meltwater forcing representation, and thus model–proxy agreement, through this time interval.</p

    The influence of Antarctic subglacial volcanism on the global iron cycle during the Last Glacial Maximum

    Get PDF
    Marine sediment records suggest that episodes of major atmospheric CO<sub>2</sub> drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-latitude deserts. However, uncertainty exists over contributions to CO<sub>2</sub> sequestration from complementary Fe sources, such as the Antarctic ice sheet, due to the difficulty of locating and interrogating suitable archives that have the potential to preserve such information. Here we present petrographic, geochemical and microbial DNA evidence preserved in precisely dated subglacial calcites from close to the East Antarctic Ice-Sheet margin, which together suggest that volcanically-induced drainage of Fe-rich waters during the Last Glacial Maximum could have reached the Southern Ocean. Our results support a significant contribution of Antarctic volcanism to subglacial transport and delivery of nutrients with implications on ocean productivity at peak glacial conditions

    Neuropsychiatric Symptoms in Patients with Aortic Aneurysms

    Get PDF
    BACKGROUND: Emerging evidence suggests that vascular disease confers vulnerability to a late-onset of depressive illness and the impairment of specific cognitive functions, most notably in the domains of memory storage and retrieval. Lower limb athero-thrombosis and abdominal aortic aneurysm (AAA) have both been previously associated with neuropsychiatric symptoms possibly due to associated intracerebral vascular disease or systemic inflammation, hence suggesting that these illnesses may be regarded as models to investigate the vascular genesis of neuropsychiatric symptoms. The aim of this study was to compare neuropsychiatric symptoms such as depression, anxiety and a variety of cognitive domains in patients who had symptoms of peripheral athero-thrombosis (intermittent claudication) and those who had an asymptomatic abdominal aortic aneurysm AAA. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study, 26 participants with either intermittent claudication or AAA were assessed using a detailed neuropsychiatric assessment battery for various cognitive domains and depression and anxiety symptoms (Hamilton Depression and Anxiety Scales). Student t test and linear regression analyses were applied to compare neuropsychiatric symptoms between patient groups. AAA participants showed greater levels of cognitive impairment in the domains of immediate and delayed memory as compared to patients who had intermittent claudication. Cognitive dysfunction was best predicted by increasing aortic diameter. CRP was positively related to AAA diameter, but not to cognitive function. AAA and aortic diameter in particular were associated with cognitive dysfunction in this study. CONCLUSIONS/SIGNIFICANCE: AAA patients are at a higher risk for cognitive impairment than intermittent claudication patients. Validation of this finding is required in a larger study, but if confirmed could suggest that systemic factors peculiar to AAA may impact on cognitive function.Bernhard T. Baune, Steven J. Unwin, Frances Quirk and Jonathan Golledg

    Whole-genome sequencing of a quarter-century melioidosis outbreak in temperate Australia uncovers a region of low-prevalence endemicity

    Get PDF
    This study was funded by the National Health and Medical Research Council via awards 1046812 and 1098337, and the Wellcome Trust Sanger Institute via award 098051. S.J.P. receives funding from the NIHR Cambridge Biomedical Research Centre.Melioidosis, caused by the highly recombinogenic bacterium Burkholderia pseudomallei, is a disease with high mortality. Tracing the origin of melioidosis outbreaks and understanding how the bacterium spreads and persists in the environment are essential to protecting public and veterinary health and reducing mortality associated with outbreaks. We used whole-genome sequencing to compare isolates from a historical quarter-century outbreak that occurred between 1966 and 1991 in the Avon Valley, Western Australia, a region far outside the known range of B. pseudomallei endemicity. All Avon Valley outbreak isolates shared the same multilocus sequence type (ST-284), which has not been identified outside this region. We found substantial genetic diversity among isolates based on a comparison of genome-wide variants, with no clear correlation between genotypes and temporal, geographical or source data. We observed little evidence of recombination in the outbreak strains, indicating that genetic diversity among these isolates has primarily accrued by mutation. Phylogenomic analysis demonstrated that the isolates confidently grouped within the Australian B. pseudomallei clade, thereby ruling out introduction from a melioidosis-endemic region outside Australia. Collectively, our results point to B. pseudomallei ST-284 being present in the Avon Valley for longer than previously recognized, with its persistence and genomic diversity suggesting long-term, low-prevalence endemicity in this temperate region. Our findings provide a concerning demonstration of the potential for environmental persistence of B. pseudomallei far outside the conventional endemic regions. An expected increase in extreme weather events may reactivate latent B. pseudomallei populations in this region.Publisher PDFPeer reviewe

    Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project

    Get PDF
    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals in Earth history is of fundamental importance. The late Pliocene warm period (also known as the PRISM interval: 3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions. Here, we present results from simulations of the Antarctic ice sheet by means of an international Pliocene Ice Sheet Modeling Intercomparison Project (PLISMIP-ANT). For the experiments, ice-sheet models including the shallow ice and shelf approximations have been used to simulate the complete Antarctic domain (including grounded and floating ice). We compare the performance of six existing numerical ice-sheet models in simulating modern control and Pliocene ice sheets by a suite of five sensitivity experiments. We include an overview of the different ice-sheet models used and how specific model configurations influence the resulting Pliocene Antarctic ice sheet. The six ice-sheet models simulate a comparable present-day ice sheet, considering the models are set up with their own parameter settings. For the Pliocene, the results demonstrate the difficulty of all six models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line, which is thought to have happened during the Pliocene for the Wilkes and Aurora basins. The specific sea-level contribution of the Antarctic ice sheet at this point cannot be conclusively determined, whereas improved grounding line physics could be essential for a correct representation of the migration of the grounding-line of the Antarctic ice sheet during the Pliocene

    Efficacy of brief behavioral counselling by allied health professionals to promote physical activity in people with peripheral arterial disease (BIPP): study protocol for a multi-center randomized controlled trial

    Get PDF
    Background: Physical activity is recommended for people with peripheral arterial disease (PAD), and can improve walking capacity and quality of life; and reduce pain, requirement for surgery and cardiovascular events. This trial will assess the efficacy of a brief behavioral counselling intervention delivered by allied health professionals to improve physical activity in people with PAD. Methods: This is a multi-center randomised controlled trial in four cities across Australia. Participants (N = 200) will be recruited from specialist vascular clinics, general practitioners and research databases and randomised to either the control or intervention group. Both groups will receive usual medical care, a written PAD management information sheet including advice to walk, and four individualised contacts from a protocol-trained allied health professional over 3 months (weeks 1, 2, 6, 12). The control group will receive four 15-min telephone calls with general discussion about PAD symptoms and health and wellbeing. The intervention group will receive behavioral counselling via two 1-h face-to-face sessions and two 15-min telephone calls. The counselling is based on the 5A framework and will promote interval walking for 3 × 40 min/week. Assessments will be conducted at baseline, and 4, 12 and 24 months by staff blinded to participant allocation.Objectively assessed outcomes include physical activity (primary), sedentary behavior, lower limb body function, walking capacity, cardiorespiratory fitness, event-based claudication index, vascular interventions, clinical events, cardiovascular function, circulating markers, and anthropometric measures. Self-reported outcomes include physical activity and sedentary behavior, walking ability, pain severity, and health-related quality of life. Data will be analysed using an intention-to-treat approach. An economic evaluation will assess whether embedding the intervention into routine care would likely be value for money. A cost-effectiveness analysis will estimate change in cost per change in activity indicators due to the intervention, and a cost-utility analysis will assess change in cost per quality-adjusted life year. A full uncertainty analysis will be undertaken, including a value of information analysis, to evaluate the economic case for further research. Discussion: This trial will evaluate the efficacy and cost-effectiveness of a brief behavioral counselling intervention for a common cardiovascular disease with significant burden. Trial registration: ACTRN 12614000592640 Australian New Zealand Clinical Trials Registry. Registration Date 4 June 2014

    Sea-level constraints on the amplitude and source distribution of Meltwater Pulse 1A.

    Get PDF
    During the last deglaciation, sea levels rose as ice sheets retreated. This climate transition was punctuated by periods of more intense melting; the largest and most rapid of these—Meltwater Pulse 1A—occurred about 14,500 years ago, with rates of sea-level rise reaching approximately 4 m per century1, 2, 3. Such rates of rise suggest ice-sheet instability, but the meltwater sources are poorly constrained, thus limiting our understanding of the causes and impacts of the event4, 5, 6, 7. In particular, geophysical modelling studies constrained by tropical sea-level records1, 8, 9 suggest an Antarctic contribution of more than seven metres, whereas most reconstructions10 from Antarctica indicate no substantial change in ice-sheet volume around the time of Meltwater Pulse 1A. Here we use a glacial isostatic adjustment model to reinterpret tropical sea-level reconstructions from Barbados2, the Sunda Shelf3 and Tahiti1. According to our results, global mean sea-level rise during Meltwater Pulse 1A was between 8.6 and 14.6 m (95% probability). As for the melt partitioning, we find an allowable contribution from Antarctica of either 4.1 to 10.0 m or 0 to 6.9 m (95% probability), using two recent estimates11, 12 of the contribution from the North American ice sheets. We conclude that with current geologic constraints, the method applied here is unable to support or refute the possibility of a significant Antarctic contribution to Meltwater Pulse 1A

    Modelled glacier response to centennial temperature and precipitation trends on the Antarctic Peninsula

    Get PDF
    The northern Antarctic Peninsula is currently undergoing rapid atmospheric warming. Increased glacier-surface melt during the twentieth century has contributed to ice-shelf collapse and the widespread acceleration, thinning and recession of glaciers. Therefore, glaciers peripheral to the Antarctic Ice Sheet currently make a large contribution to eustatic sea-level rise, but future melting may be offset by increased precipitation. Here we assess glacier-climate relationships both during the past and into the future, using ice-core and geological data and glacier and climate numerical model simulations. Focusing on Glacier IJR45 on James Ross Island, northeast Antarctic Peninsula, our modelling experiments show that this representative glacier is most sensitive to temperature change, not precipitation change. We determine that its most recent expansion occurred during the late Holocene a Little Ice Age' and not during the warmer mid-Holocene, as previously proposed. Simulations using a range of future Intergovernmental Panel on Climate Change climate scenarios indicate that future increases in precipitation are unlikely to offset atmospheric-warming-induced melt of peripheral Antarctic Peninsula glaciers
    corecore