68 research outputs found
BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation
The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health.IMPORTANCE Bacterial cells have evolved several mechanisms to cope with environmental stresses. BolA-like proteins are widely conserved from prokaryotes to eukaryotes, and in Escherichia coli, in addition to its pleiotropic effects, this protein plays a determinant role in bacterial motility and biofilm formation regulation. Similarly, the bacterial second messenger c-di-GMP is a molecule with high importance in coordinating the switch between planktonic and sessile life in bacteria. Here we have unravelled the importance of accurate regulation of cross-talk between BolA and c-di-GMP for a proper response in the regulation of these bacterial lifestyles. This finding underlines the complexity of bacterial cell regulation, revealing the existence of one additional tool for fine-tuning such important cellular molecular mechanisms. The relationship between BolA and c-di-GMP gives new perspectives regarding biofilm formation and opens the possibility to extend our studies to other organisms with relevance for human health
Intramural Vesical Leiomyoma in a Patient with a Pelvic Fibrous Tumour - Case Report
Introdução: O leiomioma vesical é um tumor benigno raro que representa,aproximadamente, 0,5% do total de neoplasias da bexiga. É frequentemente um achado imagiológico, sendo a sua localização e dimensões determinantes no desenvolvimento de sintomatologia e no tipo de procedimento a efectuar.
Caso Clínico: Reporta-se o caso de um doente com queixas urinárias de disúria, polaquiúria e esforço miccional, inicialmente interpretadas como HBP. A
investigação diagnóstica culminou com a enucleação de uma volumosa massa intramural da bexiga, com diagnóstico histológico de leiomioma, num doente com antecedentes de doença de Madelung e excisão prévia de um tumor fibroso paravesical.
Discussão: O leiomioma vesical, embora apresentando características imagiológicas típicas, deve ser sempre biopsado para confirmação histológica da sua etiologia. O tumor fibroso pélvico apresenta sempre indicação cirúrgica pois, numa minoria de
casos, pode apresentar comportamento agressivo com infiltração dos órgãos adjacentes
Polaritonic molecular clock for all-optical ultrafast imaging of wavepacket dynamics without probe pulses
Conventional approaches to probing ultrafast molecular dynamics rely on the use of synchronized laser pulses with a well-defined time delay. Typically, a pump pulse excites a molecular wavepacket. A subsequent probe pulse can then dissociate or ionize the molecule, and measurement of the molecular fragments provides information about where the wavepacket was for each time delay. Here, we propose to exploit the ultrafast nuclear-position-dependent emission obtained due to large light–matter coupling in plasmonic nanocavities to image wavepacket dynamics using only a single pump pulse. We show that the time-resolved emission from the cavity provides information about when the wavepacket passes a given region in nuclear configuration space. This approach can image both cavity-modified dynamics on polaritonic (hybrid light–matter) potentials in the strong light–matter coupling regime and bare-molecule dynamics in the intermediate coupling regime of large Purcell enhancements, and provides a route towards ultrafast molecular spectroscopy with plasmonic nanocavitiesThis work has been funded by the European Research Council grant ERC-2016-STG-714870 and the Spanish Ministry for Science, Innovation, and Universities—AEI grants RTI2018-099737-B-I00, PCI2018-093145 (through the QuantERA program of the European Commission), and CEX2018-000805-M (through the María de Maeztu program for Units of Excellence in R&D
Quantitative Control of Organ Shape by Combinatorial Gene Activity
A novel combination of molecular genetics, shape analysis, and computational modelling shows how the complex three-dimensional shape of the Snapdragon flower can arise through local gene activity
Cryptic Variation between Species and the Basis of Hybrid Performance
Studies on natural variation in gene expression and its phenotypic effects provide fresh insights into the origins of vigour and sterility in species hybrids
An everlasting pioneer: the story of Antirrhinum research
Despite the tremendous success of
Arabidopsis thaliana, no single model can
represent the vast range of form that is
seen in the ~250,000 existing species of
flowering plants (angiosperms). Here,
we consider the history and future of an
alternative angiosperm model — the
snapdragon Antirrhinum majus. We ask
what made Antirrhinum attractive to the
earliest students of variation and
inheritance, and how its use led to
landmark advances in plant genetics and
to our present understanding of plant
development. Finally, we show how the
wide diversity of Antirrhinum species,
combined with classical and molecular
genetics — the two traditional strengths
of Antirrhinum — provide an opportunity
for developmental, evolutionary and
ecological approaches. These factors
make A. majus an ideal comparative
angiosperm
Manual therapy for chronic migraine: a pragmatic randomised controlled trial study protocol
Introduction Chronic migraine is a largely refractory condition affecting between 1 and 2.2% of the overall population worldwide, with females more affected than males. There are also high health and socioeconomic costs associated both for the individual and society. The mainstay of chronic migraine management is pharmacological, but the options available have limited efficacy and there are often unwanted side effects. There is some evidence for manual therapy as a treatment option for migraine, but its effectiveness for chronic migraine is unknown. Therefore, we have designed a pragmatic randomised control trial to investigate whether adding manual therapy to the tertiary specialist treatment of chronic migraine improves patient-reported outcomes. Methods A pragmatic, randomised controlled trial in a hospital tertiary headache clinic. Participants will be randomised into one of two groups: treatment as usual or treatment as usual plus manual therapy. The primary outcome measure will be a change in the Headache Impact Test score. Secondary outcomes will also be measured over the 12-week study period including changes in headache frequency, migraine specific quality of life and reductions in relevant medicine consumption. The manual therapy group will have five treatment sessions each lasting 30 min. The recruitment target of 64 participants will allow power at 80% with p = 0.05 using minimal clinical difference for Headache Impact Test of 3.7 and includes provision for a 10% dropout rate. Recruitment will take place between August 2018 and February 2019. The results will form part of a doctoral study and be published in peer-reviewed journals and presented at national/international conferences. Discussion Current pharmacological approaches have limited effects in the management of chronic migraine and there is a requirement to improve treatment options and reduce the health and economic burden of the condition. Manual therapy has been shown to be effective in other chronic pain conditions as well as other primary headaches. This study will explore the effectiveness of manual therapy as an adjunctive approach to the management of chronic migraine. Trial registration The trial has received a favourable opinion from the UK Health Research Authority (IRAS 228901) and is registered at ClinicalTrials.gov.number NCT03395457. Registered 1st March 2018
- …