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ABSTRACT The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a
nearly ubiquitous intracellular signaling molecule involved in the transition from the
motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular
processes, including biofilm formation, motility, and virulence. BolA is a transcription
factor that promotes survival in different stresses and is also involved in biofilm for-
mation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms
leading to similar phenotypes. Here, we establish the importance of the balance be-
tween these two factors for accurate regulation of the transition between the plank-
tonic and sessile lifestyles. This balance is achieved by negative-feedback regulation
of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria
but also regulates the expression of diguanylate cyclases and phosphodiesterases.
This expression modulation influences the synthesis and degradation of c-di-GMP,
while this signaling metabolite has a negative influence in bolA mRNA transcription.
Finally, we present evidence of the dominant role of BolA in biofilm, showing that,
even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the
absence of BolA. C-di-GMP is one of the most important bacterial second messen-
gers involved in several cellular processes, including virulence, cell cycle regulation,
biofilm formation, and flagellar synthesis. In this study, we unravelled a direct con-
nection between the bolA morphogene and the c-di-GMP signaling molecule. We
show the important cross-talk that occurs between these two molecular regulators
during the transition between the motile/planktonic and adhesive/sessile lifestyles in
Escherichia coli. This work provides important clues that can be helpful in the devel-
opment of new strategies, and the results can be applied to other organisms with
relevance for human health.

IMPORTANCE Bacterial cells have evolved several mechanisms to cope with envi-
ronmental stresses. BolA-like proteins are widely conserved from prokaryotes to eu-
karyotes, and in Escherichia coli, in addition to its pleiotropic effects, this protein
plays a determinant role in bacterial motility and biofilm formation regulation. Simi-
larly, the bacterial second messenger c-di-GMP is a molecule with high importance
in coordinating the switch between planktonic and sessile life in bacteria. Here we
have unravelled the importance of accurate regulation of cross-talk between BolA
and c-di-GMP for a proper response in the regulation of these bacterial lifestyles.
This finding underlines the complexity of bacterial cell regulation, revealing the exis-
tence of one additional tool for fine-tuning such important cellular molecular mech-
anisms. The relationship between BolA and c-di-GMP gives new perspectives regard-
ing biofilm formation and opens the possibility to extend our studies to other
organisms with relevance for human health.
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The ability of bacteria to sense and adapt to environmental changes is critical for
survival. Under stress conditions, prokaryotic cells rapidly adjust their gene expres-

sion in order to induce the physiological and molecular adaptations needed. The
Escherichia coli (E. coli) bolA gene is induced at the onset of stationary phase and in
response to several stresses, leading to substantial changes in the cell (1, 2). BolA
expression is tightly regulated at the transcriptional and post-transcriptional levels (1,
3–5). Under optimal growth conditions, bolA transcription is regulated by a constitutive
promoter, bolAp2, whose activity depends on the housekeeping sigma factor �70 (1).
Under harsh environmental conditions, its expression is mostly driven by a gearbox
promoter, bolAp1, controlled by sigma factor �S (1, 2, 6). Additionally, bolA expression
is repressed by the histone-like protein H-NS (7) and by OmpR in its phosphorylated
form (8). The post-transcriptional regulation of bolA mRNA levels involves both RNase
III and poly(A) polymerase I (PAPI) (5, 9).

BolA and its homologues constitute a protein family that is widely conserved across
prokaryotes and eukaryotes (10). Functional studies have associated BolA with a range
of cellular processes, such as bacterial morphology, membrane permeability, motility,
and biofilm formation (reviewed in reference 11). However, the biological details regarding
its mechanism of action in the regulation of biofilm were only recently unravelled (12). BolA
was shown to repress flagellar synthesis and induce TCA cycle-related genes, with conse-
quences for bacterial motility (12).

One of the most extensively studied factors involved in the transition from the
motile state to the non-motile/biofilm state in bacteria is the bacterial second messen-
ger c-di-GMP (13). This molecule is synthesized by diguanylate cyclases (DGCs), whose
activity has been associated with the highly conserved GGDEF protein domain (14). On
the other hand, its hydrolysis is carried out by phosphodiesterases (PDEs), enzymes with
an EAL or HD-GYP domain (15, 16). C-di-GMP was shown to be involved in several
cellular processes, including cell differentiation (17, 18), cell cycle progression (19),
biofilm formation and dispersal (20–22), and cell motility (13, 23). One of the most
remarkable features of c-di-GMP is its ability to regulate the transition from the
planktonic lifestyle to the sessile lifestyle (13, 24). The increased production of c-di-GMP
by certain DGCs has a negative effect on cell motility and strongly activates the
production of adhesins and biofilm matrix components (13). In contrast, low levels of
c-di-GMP, associated with the activity of PDEs, promote motility and increase bacterial
dispersion (23, 25). Thus, both BolA and c-di-GMP play key roles in the transition
between the planktonic and the sessile lifestyles, repressing cell motility and promoting
biofilm development (12, 26).

In this report, we have unravelled a direct connection between the bolA morpho-
gene and the signaling molecule c-di-GMP. We show the important cross-talk that
occurs between these two molecular regulators during the transition between the
motile/planktonic and adhesive/sessile lifestyles in E. coli.

RESULTS
BolA controls cellular levels of c-di-GMP. The absence of BolA was reported to

affect the ability of E. coli to develop biofilms (27). Mutants lacking bolA showed
reduced biofilm formation and bolA overexpression led to a significant increase in
bacterial aggregation (27). Bacterial motility is particularly important at early stages of
surface colonization in E. coli (28). To evaluate the role of BolA in E. coli motility, the
swimming capacity of the bacterium was tested in the wild-type (wt) strain and
compared with the swimming capacity of bolA deletion (ΔbolA) mutant and bolA-
overexpressing strains. The overexpression was obtained with a plasmid expressing
bolA either under the control of its own promoters (bolA�) or under the control of an
arabinose-inducible promoter (bolA��). In Fig. 1A, it is possible to observe the differ-
ences between the strains expressing different quantities of BolA. In the BolA-
overproducing strains, motility was reduced, in agreement with what was previously
shown (12). Since the ability to form biofilm is partially impaired in the bolA deletion
mutant (27), it was expected that these bacteria would swim more efficiently than the
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wt strain. Surprisingly, the motility of the bolA mutant was also reduced. Thus, both the
absence of and overexpression of bolA compromise the ability of E. coli cells to spread
on semisolid agar plates.

In bacteria, YcgR reduces motility by interacting directly with flagellar motor pro-
teins, slowing down flagellar rotor speed and altering the frequency of the rotational
switch (29–31). The motility impairment obtained in the ΔbolA strain could be associ-
ated with an upregulation of YcgR. Therefore, we have analyzed the influence of BolA
absence in regard to YcgR expression. According to the transcriptomic data, variations
at the mRNA of ycgR were not detected (data not shown). Despite this fact, a bolA ycgR
double mutant was constructed and the swimming ability of E. coli was analyzed. If the
effect on swimming occurred via YcgR, even by an indirect pathway, we would expect
to observe a reversion of the ΔbolA strain phenotype. However, our results were
inconclusive and it was not possible to clarify the influence of BolA in the YcgR-
dependent flagellar rotation mechanism.

The ability of bacteria to regulate the planktonic-to-sessile lifestyle transition is also
well known to involve the bacterial second messenger c-di-GMP (13, 25). This molecule
is involved in positive regulation of curli synthesis with a negative impact in flagellar
biogenesis cascade (32) and has been described as an important factor in the transition
between the motile and non-motile lifestyles in bacteria (13). Since both BolA and
c-di-GMP seem to be regulating the motile/sessile transition, leading to similar pheno-

FIG 1 Influence of BolA in cell motility and c-di-GMP regulation. (A) To measure motility, bacteria were
inoculated in swimming agar plates. The plates were incubated at 37°C for 17 h and pictures were taken
using ImageScanner III (GE Healthcare Life Sciences). Significant differences, relative to the wt strain, were
determined by measuring the diameter of the swimming halo. ****, P � 0,0001 (analysis of variance
[ANOVA] test). (B) Quantification of c-di-GMP metabolite in bacteria expressing different amounts of BolA.
In the absence of BolA, the c-di-GMP concentration in the cells was increased about 1.7-fold. In the
presence of high levels of this protein, the c-di-GMP concentration was reduced. ****, P � 0.0001
(Student’s t test).
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types, we were interested in analyzing whether the presence or absence of BolA had
any impact in the regulation of c-di-GMP intracellular levels. Different samples, repre-
sentative of the different bacterial growth stages, were processed for c-di-GMP quan-
tification by liquid chromatography coupled with tandem mass spectrometry (Fig. 1B).
The levels of this metabolite were compared in the four different strains. In the
exponential and late exponential phases of growth, the amount of c-di-GMP was below
the detection level and thus could not be reproducibly quantified (data not shown).
However, in the early stationary phase, the levels of c-di-GMP were significantly more
nearly constant and were detectable in all extracts corresponding to the different
strains (Fig. 1B). When bolA was overexpressed using the plasmid with its own pro-
moters (bolA�), no difference in c-di-GMP levels in comparison to the wt strain levels
was observed. However, the bolA�� strain showed a decrease in c-di-GMP levels of
about 2-fold in comparison to the wt strain. Finally, in the bolA deletion mutant, the
c-di-GMP levels in the cells increased 2-fold relative to the levels seen with the wt strain.
This observation supports the data corresponding to the motility impairment previ-
ously detected in this strain; furthermore, it links BolA with the regulation of the
c-di-GMP metabolite in bacteria for the first time.

BolA is involved in the transcriptional regulation of diguanylate cyclases and
phosphodiesterases. The results presented in Fig. 1 indicate that BolA impacts the
intracellular levels of c-di-GMP. In order to further estimate the effect of BolA protein in
such a mechanism, we were interested in studying the role of this protein in c-di-GMP
synthesis and degradation. The effects of BolA in the global transcription profile of
E. coli were previously studied (12). These transcriptomic results allowed us to identify
several enzymes responsible for the synthesis (DGCs) and degradation (PDEs) of
c-di-GMP that were differentially regulated in the presence of elevated levels of BolA.
The fold change data and associated statistical significance can be observed in Table 1.
Representatives of both groups of enzymes were found among the targets that were
differentially regulated. The results from the transcriptome analysis (ΔbolA strain versus
bolA�� strain) were validated by (semi)quantitative reverse transcription PCR (RT-PCR)
(Fig. 2A). All genes were confirmed to vary in similar ways with respect to the
transcriptome data, with the single exception of yhjK. Of the total number of DGCs of
E. coli, seven were regulated in a BolA-dependent manner. Among the identified
targets, the levels of YdaM, one of the best-characterized DGCs, were reduced about
30% in the presence of BolA. Regarding the genes encoding PDEs, five were differen-
tially regulated by BolA, with three of them (ydiV, yliE, and yahA) presenting a difference
representing an increase of more than 3.3-fold in the mRNA level in comparison to the

TABLE 1 Differentially regulated genes involved in bacterial c-di-GMP synthesis and
degradationa

Gene and enzyme category Fold change P value

Diguanylate cyclases
yfiN 2.04 1.61E�02

yliF 1.97 1.13E�02

yneF 2.65 2.73E�03

yhjk 0.72 7.61E�02

ydeH 2.86 1.41E�03

ycdT 2.65 3.43E�03

ydaM 0.69 4.31E�02

Phosphodiesterases
ydiV 5.58 6.70E�04

yliE 3.38 1.73E�03

ycgF 1.49 7.79E�02

yhjH 1.84 5.10E�03

yahA 3.80 2.84E�03

aFold change data represent the bolA��/ΔbolA ratios for several genes responsible for the expression of
proteins involved in the regulation of c-di-GMP. The P value associated with each gene represents the level
of statistical significance of the differential expression.
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ΔbolA strain results. Additionally, yhjH, encoding the PDE involved in the regulation of
the mechanism of flagellar motor rotation (33, 34), was among the targets regulated.
This phosphodiesterase acts antagonistically to YegE and YedQ DGCs, having a major
effect on cell motility (29, 35). On the other hand, YdaM, by acting together with YciR
and MlrA, is described as the most important protein involved in csgD transcription, an
extremely important player in biofilm formation. Importantly, these enzyme modules
act as a sequential pathway in which regulation of c-di-GMP levels is a determinant
required to achieve a correct cellular response.

Since the expression of two of the most important enzymes involved in the
synthesis and degradation of c-di-GMP (YdaM DGC and YhjH PDE) was influenced by
BolA, we were interested in evaluating whether the elevated and reduced levels of
c-di-GMP in the �bolA and bolA�� strains, respectively, could be due to the differential
levels of expression of these enzymes. Both proteins were previously described as
participating in an important cascade of c-di-GMP regulation (36). To test this hypoth-
esis, c-di-GMP levels were estimated in a double mutant bolA ydaM strain and in the
bolA�� ΔyhjH strain (Fig. 2B and C). In fact, in the absence of bolA and ydaM, there was
a significant (70%) reduction in the levels of c-di-GMP in comparison to that seen with
the single ΔbolA mutant (Fig. 2B). Moreover, the levels of c-di-GMP under these
conditions were observed to be similar to those seen with the single ydaM mutant,
which underlines the role of BolA in regulating c-di-GMP via ydaM. Since this DGC was
previously described as not affecting motility in bacteria (35), as expected, changes
were not observed in the swimming phenotype of the ΔbolA mutant when ydaM was
simultaneously absent (see Fig. S1A in the supplemental material). Regarding the
bolA�� ΔyhjH strain, surprisingly, it did not show an increase in the level of intracellular
c-di-GMP (Fig. 2C). However, a single mutation of yhjH originated a similar phenotype.
This promptly showed us that even though BolA was binding to yhjH promoters and

FIG 2 Validation of microarrays results by RT-PCR and analysis of BolA effect on the intracellular
c-di-GMP levels in ydaM and yhjH knockout mutants. (A) The levels of several DGCs and PDEs differentially
regulated by BolA were determined to validate the data from the microarrays. In all reactions, 50 ng of
total RNA that had been extracted 3 h after the addition of arabinose to the media was used. The results
of parallel RT-PCR procedures run in the absence of reverse transcriptase yielded no product. The results
of RT-PCR performed with primers specific for 16S rRNA showed that there were no significant variations
in the amount of RNA used in each sample. The images are representative of results from at least three
independent RT-PCR experiments performed with RNAs from two different extractions. (B and C) A bolA
ydaM double mutant showed a reversion effect on the elevated levels of c-di-GMP caused by a single
bolA mutation (B). In the bolA�� strain lacking the yhjH gene, inhibition of c-di-GMP production was
retained (C). Both observations indicate a modulation of c-di-GMP levels dependent on BolA through the
regulation of ydaM and yhjH gene expression. ****, P � 0.0001 (one-way ANOVA test).
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affecting its RNA levels, it was not increasing c-di-GMP levels exclusively through this
pathway. The absence of this PDE is described to impair the swimming of bacteria (37).
Given this, testing the swimming phenotype of the bolA�� ΔyhjH double mutant,
cumulative effects on motility were observable (Fig. S1B).

To further study the biological significance of the differential levels of expression of
these enzymes, biofilm formation was tested (Fig. S2). As a control, the wt, ΔbolA, and
bolA�� strains were compared and verified to have phenotypes similar to those
described in the literature. A knockout (ΔbolA) mutant was previously shown to be
impaired in biofilm formation in comparison to a wt strain (27). Together with the
results obtained so far, this could have been related to the 1.7-fold increase in c-di-GMP
levels in this strain. To provide evidence for this, a comparison between the biofilm
formation levels of the ΔbolA and ΔbolA ΔydaM mutants was done. In fact, despite the
reduction in c-di-GMP levels in the ΔbolA ΔydaM mutant, this strain showed a similar
quantity of biofilm biomass, nearly matching the wt condition. Finally, regarding the
yhjH mutant, as can be observed in Fig. S2, the levels of biofilm matched the levels seen
with the bolA�� strain. Given this, we believe that the effect of BolA overexpression is
dominant with respect to biofilm formation due to its strong positive participation in
the regulation of the curli/fimbriae synthesis pathway (12). Together, these observa-
tions indicate the possible importance of accurate levels of c-di-GMP in the cell for
proper biofilm formation development.

In conclusion, BolA not only contributes directly to the motility of bacteria (12) but
also participates in the expression of DGCs and PDEs, influencing the synthesis and
degradation of the secondary signaling metabolite c-di-GMP.

C-di-GMP levels are regulated through the direct binding of BolA to the
promoters of diguanylate cyclases and phosphodiesterases. Previous results
showed the ability of E. coli BolA to directly interact in vivo and in vitro with DNA
molecules, influencing the rate of transcription of a given gene (12, 38, 39). The data
showing the differential regulation of DGCs and PDEs led us to investigate whether
BolA was influencing their expression in a direct manner. For that investigation, a
real-time biolayer interferometry technique was performed. Purified BolA protein was
used to test the interaction with different substrates corresponding to the promoter
regions of DGCs and PDEs. The DNA fragments amplified for this study were selected
on the basis of statistical analyses of the results of a previously performed chromatin
immunoprecipitation sequencing (ChIP-seq) experiment (12). The results of the protein-
DNA interaction can be observed in Fig. 3 and Table 2. BolA was able to interact directly
with all tested substrates with a dissociation constant in the nanomole range. The
ydaM, yhjH, and yhjK promoters were all associated with a dissociation constant of
about 35.0 nM, while the ydeH promoter presented an approximately 2-fold-higher
dissociation constant (81.1 nM). Together, our data suggest that BolA plays an impor-
tant role in the regulation of the enzymes responsible for the synthesis and degradation
of the c-di-GMP signaling molecule.

The transcription of bolA is c-di-GMP dependent. Different types of c-di-GMP
effector proteins with downstream consequences were previously unravelled with
respect to gene regulation in the cell (reviewed in reference 40). This may occur as a
consequence of the interaction of the second messenger with a transcription regulator
such as FleQ (41) or VpsT (21). It is also known that there are riboswitches that bind
c-di-GMP, followed by a second element that modulates gene expression at the
transcriptional or translational level (42).

Since our discoveries indicate a possible role of BolA in the c-di-GMP balance in
E. coli, we were interested in investigating whether this metabolite could have an
influence on the transcription of the bolA gene. With this purpose in mind, an artificial
condition where c-di-GMP would be abundant in the growth environment was created.
For that, authentic c-di-GMP was added as a supplement in the growth media. Since
this metabolite is known to reduce bacterial motility in semi-solid agar due to flagellum
rotation impairment (29), wt E. coli cultures were used for a first screening. As shown
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in Fig. 4, when growth medium was supplemented with 10 �M c-di-GMP, the bacterial
swimming capacity was significantly reduced. Moreover, this was also verified with the
addition of the related signaling molecule cGMP, with guanosine, and with the pre-
cursor nucleotide GTP. However, c-di-GMP direct degradation product pGpG did not
show any effect on the swimming pattern. Together, these results may indicate not
only that c-di-GMP can act via a sensor/receptor of bacteria but also that its precursors
may influence intracellular signaling mechanisms.

As previously mentioned, bolA expression is driven by two different promoters, one
regulated by �70 and the second regulated by �s. In stationary phase, bolA expression
is mainly controlled by the �s-associated promoter, increasing the expression of bolA by
around 70-fold (Fig. 5). Given this, wt and bolA� strains were grown to the exponential
and stationary phases in the presence or absence of c-di-GMP, and total RNA was extracted.

FIG 3 Real-time biolayer interferometry measurement of 0.5, 1.0, and 1.5 M BolA in immobilized
substrate. BolA association and dissociation data are labeled and represented by the dashed red line. BSA
protein and flhDC promoter sequence were used as negative controls.

TABLE 2 Affinity measurement by biolayer interferometrya

Gene/protein KD (M) Ka (1/ms) Ka error Kd (1/s) Kd error

ydaM 3.54E�08 1.14E�04 7.61E�01 4.03E�04 9.48E�06

yhjH 3.53E�08 1.22E�04 8.79E�01 4.29E�04 1.18E�05

yhjK 3.80E�08 1.06E�04 1.67E�02 4.01E�04 2.33E�05

ydeH 8.11E�08 7.74E�03 2.05E�02 6.27E�04 3.38E�05

flhD ND ND ND ND ND
yhjK/BSA ND ND ND ND ND
aEquilibrium dissociation constants (KD) were determined by biolayer interferometry using a BLItz system
(ForteBio Inc.) according to the results of an advanced kinetics experiment. Ka, association rate constant; Kd,
dissociation rate constant; KD, equilibrium dissociation constant of the reaction; ND, not determined.
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The levels of bolA mRNA were analyzed by quantitative real time PCR (qRT-PCR) (Fig. 5A
and B). In exponential-phase samples (Fig. 5A), there were no significant differences
between the strains growing in the absence or presence of c-di-GMP in the medium.
This was observed not only in the wt strain but also in the one overexpressing bolA
under the regulation of its own promoters (strain bolA�). However, when bacteria were
in the stationary phase (Fig. 5B), there was a significant reduction of about 60% in bolA
mRNA levels in both the wt and bolA� strains. This indicates that, independently of the
presence of bolA gene copies in the cell, the regulation by c-di-GMP is preserved in a
similar way. This regulation was additionally confirmed by transcriptional fusion performed
with a reporter gene. We have cloned bolA promoters in a plasmid encoding the
�-galactosidase enzyme. In the presence of c-di-GMP in the medium and in stationary
phase, the �-galactosidase activity reduced significantly (about 40%) (Fig. 5C). This shows
that there was a reduction in the transcription of bolA promoters dependent on c-di-GMP.

Since the mechanism by which c-di-GMP acts externally in the intracellular metab-
olism has not yet been clarified, experiments employing a similar approach were
performed using knockout strains for two enzymes (YhjH and YdaM) that are BolA
dependent and that have been reported to be important in c-di-GMP regulation. As
c-di-GMP is highly produced only during the transition from the exponential phase to
the stationary phase, we performed the qRT-PCR analyses only in the stationary-phase
cells for this set of samples. Similarly to what was observed before, in the absence of
yhjH and, consequently, with the increase of c-di-GMP levels, expression of bolA was
reduced (Fig. 6). Even if not on the same order of magnitude, it was possible to see a
significant reduction of about 25% of bolA transcript levels. On the other hand, when
ydaM was deleted and c-di-GMP levels were reduced, the impact in bolA mRNA levels
was not statistically significant, even though there was still an increase of 20% in the
bolA transcript level (Fig. 6).

Together, our results suggest not only that BolA is modulating the levels of c-di-GMP
in E. coli by regulating the expression of DGCs and PDEs but also that the c-di-GMP
signaling molecule is involved in the control of bolA expression. This cross-regulation
seems to indicate that bacteria need to balance the amounts of these two components
in order to react properly under stress conditions.

FIG 4 Motility assay of a wt strain growing in LB and in LB supplemented with 10 �M c-di-GMP, cGMP,
GTP, pGpG, or guanosine. When growth medium was supplemented with c-di-GMP, similar effects of
elevated intracellular levels of this metabolite were observed, representing inhibition of bacterial
motility. The same effect was observed when the medium was supplemented with cGMP, GTP, and
guanosine but not when it was supplemented with pGpG. cAMP, a metabolite that is not related to
c-di-GMP, was used as negative control under the same conditions. Significant differences were deter-
mined by measuring the swimming halo diameter after 10 h of growth. ****, P � 0.0001 (one-way ANOVA
test).
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DISCUSSION

The molecular mechanism behind the bacterial transition from the planktonic
lifestyle to the biofilm lifestyle has been a fascinating object of study. Despite signifi-
cant advances in the topic, there are still several interconnected pathways that need to
be clarified. Here, we are adding an important piece to the puzzle by showing that BolA
can interfere with this transition by balancing the intracellular concentration of the
bacterial second messenger c-di-GMP.

Recently, we showed that BolA is a very important transcriptional switch, that is

FIG 5 Influence of c-di-GMP in the transcription of bolA. (A and B) bolA mRNA relative expression levels
determined by qRT-PCR. Samples in the exponential (A) and stationary (B) phases of growth were analyzed.
The levels of expression of bolA were compared in wt and bolA� strains in the presence or absence of
c-di-GMP. All values are relative to expression of the wt strain in the exponential phase. (C) Graph showing
the �-galactosidase activity of a construct with the bolA promoter region. The expression of �-galactosidase
was analyzed in the wt strain cultured in LB media or in LB media supplemented with 1 �M c-di-GMP. *,
P � 0.05; **, P � 0.01 (Student’s t test).

FIG 6 Influence of YdaM and YhjH in the transcription of bolA. (Left) In a mutant strain with a deletion
of yhjH (ΔyhjH mutant) and consequently with higher intracellular levels of c-di-GMP, bolA expression was
reduced. (Right) When ydaM was deleted, with the concomitant decrease of c-di-GMP levels, expression
of bolA mRNA was slightly increased in comparison to the wt strain levels. ***, P � 0.001 (Student’s t test).
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specifically involved in the transition between the planktonic stage and the attachment
stage of biofilm formation processes (12). Elevated levels of BolA were shown to affect
negatively the swimming of bacteria in semi-solid media (12). This was due to impaired
flagellar assembly in a strain overexpressing BolA. Taking this into account and in
agreement with the role of BolA in biofilm formation (27), it would be expected that
bacteria would have improved swimming capacity in the absence of BolA. However, to
our surprise, motility was impaired in the ΔbolA strain.

The ability of bacteria to regulate the planktonic-to-sessile lifestyle transition is well
known to involve the bacterial second messenger c-di-GMP (13, 25). Its synthesis and
degradation have received significant attention in recent years (43). The regulatory
network of c-di-GMP is complex, partly due to the large number of enzymes which
synthesize (DGCs) or degrade (PDEs) this molecule and which are encoded in the genome.
In several previous studies (12, 27), BolA protein was referred to as an important bacterial
protein that stimulates biofilm formation. The fact that BolA and c-di-GMP have similar
functions with respect to the different stages of the bacterial life cycle (12, 25) and the
fact that BolA represses flagellar synthesis, enhancing the curli biosynthetic pathway,
led us to investigate if its expression had consequences for the regulation of c-di-GMP
levels. Quantitative analyses of intracellular c-di-GMP revealed an increase in the
concentration of this metabolite in ΔbolA cells. In fact, the reduced swimming seen with
this strain might be associated with the 1.7-fold-increased levels of c-di-GMP.

As mentioned above, there are large numbers of DGCs and PDEs encoded in the
bacterial genomes. The balance between synthesis and degradation of c-di-GMP comes
from a complex network of regulation that involves both types of enzymes (23). BolA
was shown to directly interact with nucleic acids in order to activate or repress gene
expression (12, 38, 39). In agreement, our results have revealed that BolA can play an
active role in the regulation of c-di-GMP. Transcriptomic analyses, together with
biolayer interferometry, allowed us to identify the BolA targets with regard to DGCs and
PDEs. Among the differentially regulated genes, there are several that encode proteins
still classified as putative DGCs or PDEs. Moreover, two of the most important enzymes
involved in the synthesis and degradation of c-di-GMP are transcriptionally controlled
by BolA. Those are the ydaM DGC and yhjH PDE. Both genes encode proteins that have
been previously described as participating in the cascade of c-di-GMP regulation linked
by the YciR trigger enzyme (36). YhjH is coregulated with flagellar genes and its levels
reduce with the concomitant increase of c-di-GMP levels (35). At the same time,
c-di-GMP impairs the activity of another PDE protein, YciR, in binding YdaM, which
allows YdaM to generate c-di-GMP and to activate the curli biosynthetic pathway (36).
Our data show downregulation of ydaM and upregulation of yhjH. Moreover, the BolA
effect on c-di-GMP appeared to be fully dependent upon the presence of YdaM. BolA
regulation of YhjH apparently had less influence on c-di-GMP. However, bolA and yhjH
mutants showed additive effects on motility, suggesting yet other targets for BolA in
the motility pathway. Thus, it is plausible to speculate about interference of BolA in the
cascade referred to above, that would result in fine-tuned gradual regulation of
c-di-GMP in the transition of bacteria to the sessile state.

Interestingly, the interplay between BolA and c-di-GMP is not unidirectional. bolA
mRNA transcription is also influenced by c-di-GMP. When this molecule is present in
elevated amounts in the cell, there is a reduction in bolA mRNA levels. This strengthens
the idea of the importance of the balance between these two molecules in achieving
a correct adaptation of bacteria to growth conditions. C-di-GMP is known to bind
proteins containing a PilZ domain (33). As a transcription factor, BolA is able to bind
nucleic acids. We believe that the balance between these two players is of major
importance for tight regulation of the complex flagellar and curli synthesis pathways.
High levels of c-di-GMP are strongly linked to bacterial biofilm formation (13). Taking
into consideration the fact that, without BolA, c-di-GMP levels are elevated but E. coli
biofilm formation is nevertheless partially impaired, the present work underlines the
importance of BolA for a proper bacterial stress response and consequent biofilm
development (Fig. 7).
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In bacteria, c-di-GMP is metabolized into pGpG, which is further hydrolyzed into
GMP (44). When c-di-GMP was added to the media as a supplement, its characteristic
effect in bacterial swimming was observed, suggesting the existence of a mechanism
by which cells can sense or internalize this second messenger molecule. Additionally,
it is plausible to hypothesize that bacteria that lyse can release different molecules to
the media, including enzymes that metabolize c-di-GMP. When the medium was
supplemented with pGpG, no response of the bacteria to this molecule was observed.
However, cGMP and the precursors GTP and guanosine had an influence on the
swimming of E. coli. Together, these observations may indicate not only that c-di-GMP
can act via a sensor/receptor of bacteria but also that the degradation product cGMP
and synthesis precursors may influence intracellular signaling mechanisms. Neverthe-
less, the specific mechanism by which c-di-GMP regulates bolA expression remains to
be elucidated.

Our results highlight the cross-talk that occurs between the BolA transcription factor
and the second molecular messenger c-di-GMP during the transition between the
planktonic and sedentary bacterial lifestyles. This finding underlines the complexity of
bacterial cell regulation, revealing the existence of one additional tool for fine-tuning
such an important cellular molecular mechanism. Whether the cross-talk between BolA
and c-di-GMP connects to feed-forward or homeostatic regulation remains unclear. In
a recent review, Caly and colleagues discussed strategies designed to control bacterial
biofilm formation by targeting c-di-GMP (45). C-di-GMP is among the most important
bacterial second messengers involved in many cellular processes, including differenti-
ation, virulence, cell cycle regulation, biofilm formation, and flagellar synthesis (43). In
this regard, the intricate relationship between BolA and c-di-GMP opens more options
with the possibility to extend our studies to other organisms with relevance for human
health.

MATERIALS AND METHODS
Oligonucleotides, bacterial strains, and plasmids. All strains and plasmids used in this study are

listed in Table S1 in the supplemental material. The oligonucleotides used in this work were synthesized
by STAB Vida and are listed in Table S2. Restriction enzymes, T4 DNA ligase, and Phusion DNA
polymerase were purchased from Fermentas. All enzymes were used according to the supplier’s
instructions. E. coli strain DH5� was used for cloning experiments. pRMA03 was constructed by inserting
a PCR-amplified DNA fragment carrying bolA promoter sequences (using RNM168 and RNM169 primers)
into SalI and SmaI sites of vector pSP417. The resulting plasmid was transformed in MC1061 ΔbolA and
MC1061 competent cells to obtain strains CMA812 and CMA813, respectively. The �Red-mediated
mutagenesis method (46) was used to obtain the single ydaM (CMA815) and yhjH (CMA817) deletion
strains. Briefly, for the ΔydaM and ΔyhjH strains, a PCR fragment was obtained by amplification of pKD3
plasmid using primer pairs RNM236/237 and yhjHKOFor/yhjHKORev, respectively. The resulting frag-
ments were transformed in MG1655 competent cells to allow recombination with the bacterial chro-
mosome. P1 transduction was used to obtain strains CMA814, CMA816, and CMA818. CMA819 was
constructed by transforming strain CMA816 with pCDA02 plasmid.

FIG 7 Cross-talk between the transcription factor BolA and the second messenger c-di-GMP in bacterial
biofilm formation. BolA and c-di-GMP are known to be important players in biofilm development. (A) Our
model suggests that a negative-feedback modulation, which leads to a balance between these two
factors, is needed for a proper physiological response. (B) Additionally, the absence of BolA leads to
less-robust biofilm formation, even in the presence of high levels of c-di-GMP, which evidences the
determinant function of this protein in the regulation of biofilm formation.
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All constructs were confirmed by DNA sequencing at STAB Vida, Portugal.
Bacterial growth conditions. E. coli strains were grown in Luria-Bertani broth (LB) at 37°C with

agitation, unless differently specified. When appropriate, antibiotics were used at the following concen-
trations: 100 �g/ml ampicillin, 50 �g/ml kanamycin, and 50 �g/ml chloramphenicol.

Overexpression and purification of BolA protein. BolA overexpression was performed using the
pPFA02 plasmid and protein purification as previously described (39). The plasmid used for expression
of BolA was the pET28a-derived pPFA02 plasmid (38), which was transformed into a Novagen E. coli
BL21(DE3) strain. Purification of BolA was performed by histidine affinity chromatography using HisTrap
chelating HP columns (GE Healthcare) and an AKTA fast protein liquid chromatography system (GE
Healthcare).

Motility assays. Motility assays were performed as previously described (12). When appropriate, the
plates were supplemented with 10 �M c-di-GMP (BioLog), pGpG (BioLog), guanosine (Sigma), cGMP
(Sigma), GTP (Sigma), and cyclic AMP (cAMP; Sigma). Pictures were taken using ImageScanner III (GE
Healthcare Life Sciences).

c-di-GMP quantification. Extraction and quantification of c-di-GMP were performed using bacterial
liquid cultures obtained in the exponential and stationary phases, according to the method of Spangler
et al. (47). The protein content of each bacterial culture was determined for normalization of c-di-GMP
intracellular levels.

Biofilm assays. Crystal violet biofilm assays were performed as previously described by Dressaire et
al. (12) with the following modifications. E. coli strains grown overnight in LB and diluted to a final optical
density at 600 nm (OD600) of 0.1 in fresh LB media and incubated at 37°C. Once the early stationary phase
was reached, the cultures were diluted to a final OD600 of 0.1 in M63 media supplemented with 0.2% of
arabinose. Aliquots (200 �l) were transferred to a 96-well polyvinyl chloride (PVC) plate and incubated
at 37°C without agitation for 24 h. The planktonic state was determined by measuring the OD600 of the
unattached cells using a SpectraMax Plus 384 microplate reader (Molecular Devices). PVC plates were
washed twice with Milli-Q (MQ) water and the attached bacteria stained with 0.1% crystal violet for
10 min. The crystal violet was solubilized by a solution of acetone-ethanol (1:4) and biofilm thickness
estimated by measuring the OD570.

Statistical analysis of differentially regulated genes. Differentially regulated genes were identified
as previously described (12). Analysis of Bayes statistics was used to evaluate the data, and the multiple-
testing issue was taken into account through the calculation of the false-discovery rate (FDR) (48). Genes
displaying a ratio associated with an FDR lower than 10% were considered differentially regulated.

RNA extraction. Total RNA extraction was performed as previously described (2). For qRT-PCR
experiments, RNA samples were collected from cultures in the exponential and stationary phases. The
extraction for RT-PCR was performed using bacterial cultures collected 3 h after BolA induction with
0.15% arabinose.

Reverse transcription-PCR (RT-PCR). RT-PCR reactions were performed as previously described (7).
Primer pairs RNM080/RNM081, SB003/SB004, RNM082/RNM083, SB007/SB008, and RNM090/RNM091
were used to analyze ydeH, yahA, yhjH, yhjK, and ydaM expression, respectively. As an independent
control, 16S rRNA was amplified with specific primers 16srrnF/16srrnR.

Quantitative real-time PCR (qRT-PCR). The expression of bolA mRNA was determined with a
Rotor-Gene 3000 system (Corbett), using a SensiFast SYBR kit (Bioline) according to the supplier’s
instructions. When necessary, bacterial cultures were supplemented with 1 �M c-di-GMP. qRT-PCR was
performed with bolA gene-specific primers (RNM115 and RNM116). The cysG housekeeping gene was
used as a control (RNM125 and RNM126). Relative quantifications of gene expression were calculated by
the threshold cycle (ΔΔCT) method (49).

Determination of equilibrium dissociation constant (KD). The KD of the interaction of BolA with
the substrates was determined using a BLItz system (ForteBio Inc.) according to the instructions of the
manufacturer. Biotin-labeled DNA fragments were obtained by PCR, using RNM164*/RNM195, RNM196/
RNM197*, RNM198*/RNM199, and RNM200*/RNM201 primers to amplify ydaM, yhjH, yhjK, and ydeH
promoter regions, respectively. A negative-control experiment was performed with bovine serum
albumin (BSA) protein and flhDC promoter sequence.

�-Galactosidase activity assays. The �-galactosidase activity of pRMA03 transcriptional fusion
(Table S1) was assayed as described by Miller (50), with some modifications (12). The levels of expression
of LacZ fusions were measured at specific time points during the entire growth cycle of bacteria.
�-Galactosidase activity levels were expressed in Miller units using the following equation: Miller units �
1,000 � [OD420 � (1.75 � OD550)]/(t � v � OD600) (where t represents time and v represents volume).

Accession number(s). Microarray raw data (GenBank accession number GSE58509) were accessed
from the Gene Expression Omnibus (GEO) (12).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00443-17.
FIG S1, TIF file, 1.3 MB.
FIG S2, TIF file, 1.2 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, DOCX file, 0.1 MB.
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