654 research outputs found
Electrical resistivity ofYb(Rh1-xCox)2Si2 single crystals at low temperatures
We report low-temperature measurements of the electrical resistivity of
Yb(Rh1-xCox)2Si2 single crystals with 0 <= x <= 0.12. The isoelectronic
substitution of Co on the Rh site leads to a decrease of the unit cell volume
which stabilizes the antiferromagnetism. Consequently, the antiferromagnetic
transition temperature increases upon Co substitution. For x = 0.07 Co content
a subsequent low-temperature transition is observed in agreement with
susceptibility measurements and results on YbRh2Si2 under hydrostatic pressure.
Above the Neel transition the resistivity follows a non-Fermi liquid behavior
similar to that of YbRh2Si2.Comment: 4 pages, submitted to SCES0
Break up of heavy fermions at an antiferromagnetic instability
We present results of high-resolution, low-temperature measurements of the
Hall coefficient, thermopower, and specific heat on stoichiometric YbRh2Si2.
They support earlier conclusions of an electronic (Kondo-breakdown) quantum
critical point concurring with a field induced antiferromagnetic one. We also
discuss the detachment of the two instabilities under chemical pressure. Volume
compression/expansion (via substituting Rh by Co/Ir) results in a
stabilization/weakening of magnetic order. Moderate Ir substitution leads to a
non-Fermi-liquid phase, in which the magnetic moments are neither ordered nor
screened by the Kondo effect. The so-derived zero-temperature global phase
diagram promises future studies to explore the nature of the Kondo breakdown
quantum critical point without any interfering magnetism.Comment: minor changes, accepted for publication in JPS
Sauter-Schwinger like tunneling in tilted Bose-Hubbard lattices in the Mott phase
We study the Mott phase of the Bose-Hubbard model on a tilted lattice. On the
(Gutzwiller) mean-field level, the tilt has no effect -- but quantum
fluctuations entail particle-hole pair creation via tunneling. For small
potential gradients (long-wavelength limit), we derive a quantitative analogy
to the Sauter-Schwinger effect, i.e., electron-positron pair creation out of
the vacuum by an electric field. For large tilts, we obtain resonant tunneling
related to Bloch oscillations.Comment: 4 pages, 1 figur
Fermi-surface collapse and dynamical scaling near a quantum critical point
Quantum criticality arises when a macroscopic phase of matter undergoes a
continuous transformation at zero temperature. While the collective
fluctuations at quantum-critical points are being increasingly recognized as
playing an important role in a wide range of quantum materials, the nature of
the underlying quantum-critical excitations remains poorly understood. Here we
report in-depth measurements of the Hall effect in the heavy-fermion metal
YbRh2Si2, a prototypical system for quantum criticality. We isolate a rapid
crossover of the isothermal Hall coefficient clearly connected to the
quantum-critical point from a smooth background contribution; the latter exists
away from the quantum-critical point and is detectable through our studies only
over a wide range of magnetic field. Importantly, the width of the critical
crossover is proportional to temperature, which violates the predictions of
conventional theory and is instead consistent with an energy over temperature,
E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our
results provide evidence that the quantum-dynamical scaling and a critical
Kondo breakdown simultaneously operate in the same material. Correspondingly,
we infer that macroscopic scale-invariant fluctuations emerge from the
microscopic many-body excitations associated with a collapsing Fermi-surface.
This insight is expected to be relevant to the unconventional
finite-temperature behavior in a broad range of strongly correlated quantum
systems.Comment: 5 pages, plus supporting materia
Dysphagia Affecting Quality of Life in Cerebellar Ataxia—a Large Survey
Dysphagia is a common symptom in neurodegenerative disorders and is generally associated with increased mortality. In the clinical care setting of ataxia patients, no systematical and standardized assessment of dysphagia is employed. Its impact on patients’ health-related quality of life is not well understood. To assess the impact of dysphagia in ataxia patients on diet, body weight, and health-related quality of life. We conducted a large survey using self-reported questionnaires for swallowing-related quality of life (Swal-QOL) and a food frequency list in combination with retrospective clinical data of 119 patients with cerebellar ataxia treated in the neurological outpatient clinic of a large German university hospital. Seventeen percent of ataxia patients suffered from dysphagia based on the Swal-QOL score. Less than 1% of all patients reported dysphagia as one of their most disabling symptoms. Dysphagia was associated with unintentional weight loss (p = 0.02) and reduced health-related quality of life (p = 0.01) but did not affect individual nutritional habits (p > 0.05; Chi-squared test). Dysphagia is a relevant symptom in cerebellar ataxia. A systematic screening for dysphagia in patients with cerebellar ataxia would be desirable to enable early diagnosis and treatment
Signatures of Planck-scale interactions in the cosmic microwave background?
Based on a rather general low-energy effective action (interacting quantum
fields in classical curved space-times), we calculate potential signatures of
new physics (such as quantum gravity) at ultra-high energies (presumably the
Planck scale) in the anisotropies of the cosmic microwave background. These
Planck-scale interactions create non-Gaussian contributions, where special
emphasis is laid on the three-point function as the most promising observable,
which also allows the discrimination between models violating and those obeying
Lorentz invariance. PACS: 98.80.Cq, 04.62.+v, 98.70.Vc, 98.80.Qc.Comment: 4 page
Seiberg-Witten maps and noncommutative Yang-Mills theories for arbitrary gauge groups
Seiberg-Witten maps and a recently proposed construction of noncommutative
Yang-Mills theories (with matter fields) for arbitrary gauge groups are
reformulated so that their existence to all orders is manifest. The ambiguities
of the construction which originate from the freedom in the Seiberg-Witten map
are discussed with regard to the question whether they can lead to inequivalent
models, i.e., models not related by field redefinitions.Comment: 12 pages; references added, minor misprints correcte
Metabolic, mental and immunological effects of normoxic and hypoxic training in multiple sclerosis patients: a pilot study
Background: Physical activity might attenuate inflammation and neurodegeneration in multiple sclerosis (MS). Erythropoietin, which is produced upon exposure to hypoxia, is thought to act as a neuroprotective agent in MS. Therefore, we studied the effects of intermittent hypoxic training on activity energy expenditure, maximal workload, serum erythropoietin, and immunophenotype focusing on regulatory and IL-17A-producing T cells. Methods: We assigned 34 relapsing-remitting MS patients within a randomized, single blind, parallel-group study to either normoxic (NO) or hypoxic (HO) treadmill training, both 3 times/week for 1 h over 4 weeks (Clinicaltrials.gov identifier: NCT02509897). Before and after training, activity energy expenditure (metabolic chamber), maximal workload (incremental treadmill test), walking ability, depressive symptoms (Beck Depression Inventory I), serum erythropoietin concentrations, and immunophenotype of peripheral blood mononuclear cells (PBMCs) were assessed. Results: Energy expenditure did not change due to training in both groups, but was rather fueled by fat than by carbohydrate oxidation after HO training (P = 0.002). Maximal workload increased by 40 Watt and 42 Watt in the NO and HO group, respectively (both P < 0.0001). Distance patients walked in 6 min increased by 25 m and 27 m in the NO and HO group, respectively (NO P = 0.02; HO P = 0.01). Beck Depression Inventory score markedly decreased in both groups (NO P = 0.03; HO P = 0.0003). NO training shifted Treg subpopulations by increasing and decreasing the frequency of CD39(+) and CD31(+) Tregs, respectively, and decreased IL-17A-producing CD4(+) cells. HO training provoked none of these immunological changes. Erythropoietin concentrations were within normal range and did not significantly change in either group. Conclusion: 4 weeks of moderate treadmill training had considerable effects on fitness level and mood in MS patients, both under normoxic and hypoxic conditions. Additionally, NO training improved Th17/Treg profile and HO training improved fatty acid oxidation during exercise. These effects could not be attributed to an increase of erythropoietin
Magnetic and electronic quantum criticality in YbRh2Si2
The unconventional nature of the quantum criticality in YbRh 2Si 2 is highlighted on the basis of magnetoresistivity and susceptibility measurements. Results obtained under chemical pressure realized by isoelectronic substitution on the rhodium site are presented. These results illustrate the position of the T*-line associated with a breakdown of the Kondo effect near the antiferromagnetic instability in the low-temperature phase diagram. Whereas at zero temperature the Kondo breakdown and the antiferromagnetic quantum critical point coincide in the proximity of the stoichiometric compound, they are seen to be detached under chemical pressure: For positive chemical pressure the magnetically ordered phase extends beyond the T*(B)-line. For sufficiently high negative pressure the T*(B)-line is separated from the magnetically ordered phase. From our detailed analysis we infer that the coincidence is retained at small iridium concentrations, i.e., at small negative chemical pressure. We outline further measurements which may help to clarify the detailed behavior of the two instabilities. © 2010 Springer Science+Business Media, LLC
Anomaly freedom in Seiberg-Witten noncommutative gauge theories
We show that noncommutative gauge theories with arbitrary compact gauge group
defined by means of the Seiberg-Witten map have the same one-loop anomalies as
their commutative counterparts. This is done in two steps. By explicitly
calculating the \epsilon^{\m_1\m_2\m_3\m_4} part of the renormalized
effective action, we first find the would-be one-loop anomaly of the theory to
all orders in the noncommutativity parameter \theta^{\m\n}. And secondly we
isolate in the would-be anomaly radiative corrections which are not BRS
trivial. This gives as the only true anomaly occurring in the theory the
standard Bardeen anomaly of commutative spacetime, which is set to zero by the
usual anomaly cancellation condition.Comment: LaTeX 2e, no macros, no figures, 32 A4 page
- …