Quantum criticality arises when a macroscopic phase of matter undergoes a
continuous transformation at zero temperature. While the collective
fluctuations at quantum-critical points are being increasingly recognized as
playing an important role in a wide range of quantum materials, the nature of
the underlying quantum-critical excitations remains poorly understood. Here we
report in-depth measurements of the Hall effect in the heavy-fermion metal
YbRh2Si2, a prototypical system for quantum criticality. We isolate a rapid
crossover of the isothermal Hall coefficient clearly connected to the
quantum-critical point from a smooth background contribution; the latter exists
away from the quantum-critical point and is detectable through our studies only
over a wide range of magnetic field. Importantly, the width of the critical
crossover is proportional to temperature, which violates the predictions of
conventional theory and is instead consistent with an energy over temperature,
E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our
results provide evidence that the quantum-dynamical scaling and a critical
Kondo breakdown simultaneously operate in the same material. Correspondingly,
we infer that macroscopic scale-invariant fluctuations emerge from the
microscopic many-body excitations associated with a collapsing Fermi-surface.
This insight is expected to be relevant to the unconventional
finite-temperature behavior in a broad range of strongly correlated quantum
systems.Comment: 5 pages, plus supporting materia