500 research outputs found
Full vs Partial Market Coverage with Minimum Quality Standards
The consequences of the adoption of quality standards on the extent of market coverage is investigated by modelling a game between regulator and low-quality firm in a vertically differentiated duopoly. The game has a unique equilibrium in the most part of the parameter range. There exists a non-negligible range where the game has no equilibrium in pure strategies. This result questions the feasibility of MQS regulation when firms endogenously determine market coverage
Densely Entangled Financial Systems
In [1] Zawadoski introduces a banking network model in which the asset and
counter-party risks are treated separately and the banks hedge their assets
risks by appropriate OTC contracts. In his model, each bank has only two
counter-party neighbors, a bank fails due to the counter-party risk only if at
least one of its two neighbors default, and such a counter-party risk is a low
probability event. Informally, the author shows that the banks will hedge their
asset risks by appropriate OTC contracts, and, though it may be socially
optimal to insure against counter-party risk, in equilibrium banks will {\em
not} choose to insure this low probability event.
In this paper, we consider the above model for more general network
topologies, namely when each node has exactly 2r counter-party neighbors for
some integer r>0. We extend the analysis of [1] to show that as the number of
counter-party neighbors increase the probability of counter-party risk also
increases, and in particular the socially optimal solution becomes privately
sustainable when each bank hedges its risk to at least n/2 banks, where n is
the number of banks in the network, i.e., when 2r is at least n/2, banks not
only hedge their asset risk but also hedge its counter-party risk.Comment: to appear in Network Models in Economics and Finance, V. Kalyagin, P.
M. Pardalos and T. M. Rassias (editors), Springer Optimization and Its
Applications series, Springer, 201
Let-7 Represses Carcinogenesis and a Stem Cell Phenotype in the Intestine via Regulation of Hmga2
Let-7 miRNAs comprise one of the largest and most highly expressed family of miRNAs among vertebrates, and is critical for promoting differentiation, regulating metabolism, inhibiting cellular proliferation, and repressing carcinogenesis in a variety of tissues. The large size of the Let-7 family of miRNAs has complicated the development of mutant animal models. Here we describe the comprehensive repression of all Let-7 miRNAs in the intestinal epithelium via low-level tissue-specific expression of the Lin28b RNA-binding protein and a conditional knockout of the MirLet7c-2/Mirlet7b locus. This ablation of Let-7 triggers the development of intestinal adenocarcinomas concomitant with reduced survival. Analysis of both mouse and human intestinal cancer specimens reveals that stem cell markers were significantly associated with loss of Let-7 miRNA expression, and that a number of Let-7 targets were elevated, including Hmga1 and Hmga2. Functional studies in 3-D enteroids revealed that Hmga2 is necessary and sufficient to mediate many characteristics of Let-7 depletion, namely accelerating cell cycle progression and enhancing a stem cell phenotype. In addition, inactivation of a single Hmga2 allele in the mouse intestine epithelium significantly represses tumorigenesis driven by Lin28b. In aggregate, we conclude that Let-7 depletion drives a stem cell phenotype and the development of intestinal cancer, primarily via Hmga2
Impact of a training program on the surveillance of Clostridioides difficile infection
A high degree of vigilance and appropriate diagnostic methods are required to detect Clostridioides difficile infection (CDI). We studied the effectiveness of a multimodal training program for improving CDI surveillance and prevention. Between 2011 and 2016, this program was made available to healthcare staff of acute care hospitals in Catalonia. The program included an online course, two face-to-face workshops and dissemination of recommendations on prevention and diagnosis. Adherence to the recommendations was evaluated through surveys administered to the infection control teams at the 38 participating hospitals. The incidence of CDI increased from 2.20 cases/10 000 patient-days in 2011 to 3.41 in 2016 (P < 0.001). The number of hospitals that applied an optimal diagnostic algorithm rose from 32.0% to 71.1% (P = 0.002). Hospitals that applied an optimal diagnostic algorithm reported a higher overall incidence of CDI (3.62 vs. 1.92, P < 0.001), and hospitals that were more active in searching for cases reported higher rates of hospital-acquired CDI (1.76 vs. 0.84, P < 0.001). The results suggest that the application of a multimodal training strategy was associated with a significant rise in the reporting of CDI, as well as with an increase in the application of the optimal diagnostic algorithm
On the Computational Complexity of Measuring Global Stability of Banking Networks
Threats on the stability of a financial system may severely affect the
functioning of the entire economy, and thus considerable emphasis is placed on
the analyzing the cause and effect of such threats. The financial crisis in the
current and past decade has shown that one important cause of instability in
global markets is the so-called financial contagion, namely the spreading of
instabilities or failures of individual components of the network to other,
perhaps healthier, components. This leads to a natural question of whether the
regulatory authorities could have predicted and perhaps mitigated the current
economic crisis by effective computations of some stability measure of the
banking networks. Motivated by such observations, we consider the problem of
defining and evaluating stabilities of both homogeneous and heterogeneous
banking networks against propagation of synchronous idiosyncratic shocks given
to a subset of banks. We formalize the homogeneous banking network model of
Nier et al. and its corresponding heterogeneous version, formalize the
synchronous shock propagation procedures, define two appropriate stability
measures and investigate the computational complexities of evaluating these
measures for various network topologies and parameters of interest. Our results
and proofs also shed some light on the properties of topologies and parameters
of the network that may lead to higher or lower stabilities.Comment: to appear in Algorithmic
Do bad borrowers hurt good borrowers? A model of biased banking competition
This paper explores a two-bank model in which, first, one bank correctly estimates the probability of low-quality loan repayment while the other overestimates it, and second, both banks have identical convex costs when granting loans. In this context of optimistically biased banking competition, we show how the unbiased bank follows the biased competitor as long as the bias of the latter is not too large. This would favour bad borrowers, who get better credit conditions at the expense of good borrowers. As a consequence, the presence of a biased bank increases welfare as long as the expected default rate is sufficiently high. Contrariwise, in subprime markets, biased banking competition would be socially harmful.info:eu-repo/semantics/publishedVersio
The Cherenkov Telescope Array Large Size Telescope
The two arrays of the Very High Energy gamma-ray observatory Cherenkov
Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with
a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA
to achieve a low-energy threshold of 20 GeV, which is critical for important
studies in astrophysics, astroparticle physics and cosmology. This work
presents the key specifications and performance of the current LST design in
the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
Deposit Insurance in General Equilibrium
We study the consequences and optimal design of bank deposit insurance in a general equilibrium model. The model involves two production sectors. One sector is financed by issuing bonds to risk-averse households. Firms in the other sector are monitored and financed by banks. Households fund banks through deposits and equity. Deposits are explicitly insured by a de- posit insurance fund. Any remaining shortfall is implicitly guaranteed by the government. The deposit insurance fund charges banks a premium per unit of deposits whereas the government finances any necessary bail-outs by lump-sum taxation of households. When the deposit insurance premium is actuarially fair or higher than actuarially fair, two types of equilibria emerge: One type of equilibria supports the socially optimal (Arrow-Debreu) allo- cation, and the other type does not. In the latter case, bank lending is too large relative to equity and the probability that the banking system collapses is positive. Next, we show that a judicious combination of deposit insurance and reinsurance eliminates all non-optimal equilibrium allocations
- …