research

Densely Entangled Financial Systems

Abstract

In [1] Zawadoski introduces a banking network model in which the asset and counter-party risks are treated separately and the banks hedge their assets risks by appropriate OTC contracts. In his model, each bank has only two counter-party neighbors, a bank fails due to the counter-party risk only if at least one of its two neighbors default, and such a counter-party risk is a low probability event. Informally, the author shows that the banks will hedge their asset risks by appropriate OTC contracts, and, though it may be socially optimal to insure against counter-party risk, in equilibrium banks will {\em not} choose to insure this low probability event. In this paper, we consider the above model for more general network topologies, namely when each node has exactly 2r counter-party neighbors for some integer r>0. We extend the analysis of [1] to show that as the number of counter-party neighbors increase the probability of counter-party risk also increases, and in particular the socially optimal solution becomes privately sustainable when each bank hedges its risk to at least n/2 banks, where n is the number of banks in the network, i.e., when 2r is at least n/2, banks not only hedge their asset risk but also hedge its counter-party risk.Comment: to appear in Network Models in Economics and Finance, V. Kalyagin, P. M. Pardalos and T. M. Rassias (editors), Springer Optimization and Its Applications series, Springer, 201

    Similar works

    Full text

    thumbnail-image

    Available Versions