47 research outputs found

    Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene

    Get PDF
    Bovine spinal dysmyelination (BSD) is a recessive congenital neurodegenerative disease in cattle (Bos taurus) characterized by pathological changes of the myelin sheaths in the spinal cord. The occurrence of BSD is a longstanding problem in the American Brown Swiss (ABS) breed and in several European cattle breeds upgraded with ABS. Here, we show that the disease locus on bovine chromosome 11 harbors the SPAST gene that, when mutated, is responsible for the human disorder hereditary spastic paraplegia (HSP). Initially, SPAST encoding Spastin was considered a less likely candidate gene for BSD since the modes of inheritance as well as the time of onset and severity of symptoms differ widely between HSP and BSD. However, sequence analysis of the bovine SPAST gene in affected animals identified a R560Q substitution at a position in the ATPase domain of the Spastin protein that is invariant from insects to mammals. Interestingly, three different mutations in human SPAST gene at the equivalent position are known to cause HSP. To explore this observation further, we genotyped more than 3,100 animals of various cattle breeds and found that the glutamine allele exclusively occurred in breeds upgraded with ABS. Furthermore, all confirmed BSD carriers were heterozygous, while all affected calves were homozygous for the glutamine allele consistent with recessive transmission of the underlying mutation and complete penetrance in the homozygous state. Subsequent analysis of recombinant Spastin in vitro showed that the R560Q substitution severely impaired the ATPase activity, demonstrating a causal relationship between the SPAST mutation and BSD

    The CanOE Strategy: Integrating Genomic and Metabolic Contexts across Multiple Prokaryote Genomes to Find Candidate Genes for Orphan Enzymes

    Get PDF
    Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes), a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short). The first step locates “genomic metabolons”, i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12

    Oligomerization of ZFYVE27 (Protrudin) Is Necessary to Promote Neurite Extension

    Get PDF
    ZFYVE27 (Protrudin) was originally identified as an interacting partner of spastin, which is most frequently mutated in hereditary spastic paraplegia. ZFYVE27 is a novel member of FYVE family, which is implicated in the formation of neurite extensions by promoting directional membrane trafficking in neurons. Now, through a yeast two-hybrid screen, we have identified that ZFYVE27 interacts with itself and the core interaction region resides within the third hydrophobic region (HR3) of the protein. We confirmed the ZFYVE27's self-interaction in the mammalian cells by co-immunoprecipitation and co-localization studies. To decipher the oligomeric nature of ZFYVE27, we performed sucrose gradient centrifugation and showed that ZFYVE27 oligomerizes into dimer/tetramer forms. Sub-cellular fractionation and Triton X-114 membrane phase separation analysis indicated that ZFYVE27 is a peripheral membrane protein. Furthermore, ZFYVE27 also binds to phosphatidylinositol 3-phosphate lipid moiety. Interestingly, cells expressing ZFYVE27ΔHR3 failed to produce protrusions instead caused swelling of cell soma. When ZFYVE27ΔHR3 was co-expressed with wild-type ZFYVE27 (ZFYVE27WT), it exerted a dominant negative effect on ZFYVE27WT as the cells co-expressing both proteins were also unable to induce protrusions and showed cytoplasmic swelling. Altogether, it is evident that a functionally active form of oligomer is crucial for ZFYVE27 ability to promote neurite extensions

    Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome

    Get PDF
    Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation

    Mutational spectrum of the SPG4 (SPAST) and SPG3A (ATL1) genes in Spanish patients with hereditary spastic paraplegia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary Spastic Paraplegias (HSP) are characterized by progressive spasticity and weakness of the lower limbs. At least 45 loci have been identified in families with autosomal dominant (AD), autosomal recessive (AR), or X-linked hereditary patterns. Mutations in the <it>SPAST </it>(<it>SPG4</it>) and <it>ATL1 </it>(<it>SPG3A</it>) genes would account for about 50% of the ADHSP cases.</p> <p>Methods</p> <p>We defined the <it>SPAST </it>and <it>ATL1 </it>mutational spectrum in a total of 370 unrelated HSP index cases from Spain (83% with a pure phenotype).</p> <p>Results</p> <p>We found 50 <it>SPAST </it>mutations (including two large deletions) in 54 patients and 7 <it>ATL1 </it>mutations in 11 patients. A total of 33 of the <it>SPAST </it>and 3 of the <it>ATL1 </it>were new mutations. A total of 141 (31%) were familial cases, and we found a higher frequency of mutation carriers among these compared to apparently sporadic cases (38% vs. 5%). Five of the <it>SPAST </it>mutations were predicted to affect the pre-mRNA splicing, and in 4 of them we demonstrated this effect at the cDNA level. In addition to large deletions, splicing, frameshifting, and missense mutations, we also found a nucleotide change in the stop codon that would result in a larger ORF.</p> <p>Conclusions</p> <p>In a large cohort of Spanish patients with spastic paraplegia, <it>SPAST </it>and <it>ATL1 </it>mutations were found in 15% of the cases. These mutations were more frequent in familial cases (compared to sporadic), and were associated with heterogeneous clinical manifestations.</p

    The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans

    Get PDF
    Supplementary informationis available for this paper athttps://doi.org/10.1038/s41467-020-18906-7Six CO2 fixation pathways are known to operate in photoautotrophic and chemoautotrophic microorganisms. Here, we describe chemolithoautotrophic growth of the sulphate-reducing bacterium Desulfovibrio desulfuricans (strain G11) with hydrogen and sulphate as energy substrates. Genomic, transcriptomic, proteomic and metabolomic analyses reveal that D. desulfuricans assimilates CO2 via the reductive glycine pathway, a seventh CO2 fixation pathway. In this pathway, CO2 is first reduced to formate, which is reduced and condensed with a second CO2 to generate glycine. Glycine is further reduced in D. desulfuricans by glycine reductase to acetyl-P, and then to acetyl-CoA, which is condensed with another CO2 to form pyruvate. Ammonia is involved in the operation of the pathway, which is reflected in the dependence of the autotrophic growth rate on the ammonia concentration. Our study demonstrates microbial autotrophic growth fully supported by this highly ATP-efficient CO2 fixation pathway.We acknowledge Änne-Michaelis and William Newell for assistance with the LC-MS forthe metabolomics experiments and Daniel Amador-Noguez for access to the LC-MS usedfor13C intracellular metabolomic analysis. We thank Ines Cardoso Pereira and John vander Oost for critically reading the manuscript. This research was funded by the Neth-erlands Organisation for Scientific Research (NWO) through SIAM Gravitation Grant024.002.002 and the Innovation Program Microbiology (WUR), NJC acknowledgesfunding from NWO through a Rubicon Grant (019.163LW.035) and a Veni Grant(VI.Veni.192.156).info:eu-repo/semantics/publishedVersio

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Hereditary spastic paraplegia caused by mutations in the SPG4 gene

    No full text
    Autosomal dominant hereditary spastic paraplegia (AD-HSP) is a genetically heterogeneous neurodegenerative disorder characterised by progressive spasticity of the lower limbs. The SPG4 locus at 2p21-p22 accounts for 40-50% of all AD-HSP families. The SPG4 gene was recently identified. It is ubiquitously expressed in adult and foetal tissues and encodes and encodes spastin, an ATPase of the AAA family. We have now identified four novel SPG4 mutations in German AD-HSP families, including one large family for which anticipation had been proposed. Mutations include one frame-shift and one missense mutation, both affecting the Walker motif B. Two further mutations affect two donor splice sites in introns 12 and 16, respectively. RT-PCR analysis of both donor splice site mutations revealed exon skipping and reduced stability of aberrantly spliced SPG4 mRNA. All mutations are predicted to cause loss of functional protein. In conclusion, we confirm in German families that SPG4 mutations cause AD-HSP. Our data suggest that SPG4 mutations exert their dominant effect not by gain of function but by haploinsufficiency. If a threshold level of spastin were critical for axonal preservation, such threshold dosage effects might explain the variable expressivity and incomplete penetrance of SPG4-linked AD-HSP
    corecore