342 research outputs found

    Prevention and control of malaria and sleeping sickness in Africa: Where are we and where are we going?

    Get PDF
    The International Symposium on Malaria and Human African Trypanosomiasis: New Strategies for their Prevention & Control was held 7-8 October, 2010 in Cotonou, Benin with about 250 participants from 20 countries. This scientific event aimed at identifying the gaps and research priorities in the prevention and control of malaria and sleeping sickness in Africa and to promote exchange between North and South in the fields of medical entomology, epidemiology, immunology and parasitology. A broad range of influential partners from academia (scientists), stakeholders, public health workers and industry attempted the meeting and about 40 oral communications and 20 posters were presented by phD students and internationally-recognized scientists from the North and the South. Finally, a special award ceremony was held to recognize efforts in pioneer work conducted by staff involved in the diagnostic of the Sleeping illness in West Africa with partnership and assistance from WHO and Sanofi-Aventis group

    Lamellar nickel hydroxy-halides: anionic exchange synthesis, structural characterization and magnetic behavior:

    Get PDF
    Nickel-layered hydroxy-halides LHS-Ni-X (X = Cl, Br, and I) have been prepared by exchange reactions conducted in an aqueous medium under an inert atmosphere starting from the parent nickel-layered hydroxyacetate. The latter was prepared by a hydrolysis reaction conducted in a polyol medium. IR and X-ray diffraction (XRD) studies show total exchange. These compounds exhibit a brucite-like structure with a turbostratic nature. Their interlamellar distance varies linearly with the radius of the halide anion in the range 7.9-8.7 angstrom while the hydroxyacetate interlamellar distance is 10.53 angstrom. In comparison with the acetate ion which replaces hydroxyl groups in the brucite-like layer, EXAFS and XRD investigations show that halide ions are intercalated into the interlayer space along with water molecules without any covalent bonding to the nickel ion. All compounds have similar structural features and can be considered as alpha-type nickel hydroxides, alpha-Ni(OH)(2). These compounds exhibit a ferromagnetic character. The latter is discussed on the basis of the Drillon-Panissod model of ferromagnetic layers interacting via dipole interactions and taking into account the structural features established by XANES and XRD studies along with the intrinsic properties of the halide anions

    Внесок професора В. І. Дейча у розвиток меліоративної справи XIX століття

    Get PDF
    У статті висвітлюється наукова і педагогічна діяльність забутої постаті інженера-гідротехніка, професора В. І. Дейча та його внесок у розвиток меліораційної справи XIX століття.В статье освещается научная и педагогическая деятельность забытой личности инженера-гидротехника, профессора В. И. Дейча и его вклад в развитие мелиорации XIX века.The article highlights the scientific and pedagogical activity forgotten individual hydraulic engineer, Professor V. Deutsch and his contribution to the amelioration of the XIX century

    Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage

    Get PDF
    © 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes

    High production of pro-inflammatory cytokines by maternal blood mononuclear cells is associated with reduced maternal malaria but increased cord blood infection

    Get PDF
    BACKGROUND: Increased susceptibility to malaria during pregnancy is not completely understood. Cellular immune responses mediate both pathology and immunity but the effector responses involved in these processes have not been fully characterized. Maternal and fetal cytokine and chemokine responses to malaria at delivery, and their association with pregnancy and childhood outcomes, were investigated in 174 samples from a mother and child cohort from Mozambique. Peripheral and cord mononuclear cells were stimulated with Plasmodium falciparum lysate and secretion of IL-12p70, IFN-gamma, IL-2, IL-10, IL-8, IL-6, IL-4, IL-5, IL-1beta, TNF, TNF-beta was quantified in culture supernatants by multiplex flow cytometry while cellular mRNA expression of IFN-gamma, TNF, IL-2, IL-4, IL-6, IL-10 and IL-13 was measured by quantitative PCR. RESULTS: Higher concentrations of IL-6 and IL-1beta were associated with a reduced risk of P. falciparum infection in pregnant women (p < 0.049). Pro-inflammatory cytokines IL-6, IL-1beta and TNF strongly correlated among themselves (rho > 0.5, p < 0.001). Higher production of IL-1beta was significantly associated with congenital malaria (p < 0.046) and excessive TNF was associated with peripheral infection and placental lesions (p < 0.044). CONCLUSIONS: Complex network of immuno-pathological cytokine mechanisms in the placental and utero environments showed a potential trade-off between positive and negative effects on mother and newborn susceptibility to infection

    Shaping gold nanocomposites with tunable optical properties

    Get PDF
    We report the synthesis of morphological uniform composites using miniemulsions of poly(tert-butyl acrylate) or poly(styrene) containing organically capped gold nanocrystals (NCs). The optical features of such hybrid structures are dominated by plasmonic effects and depend critically on the morphology of the resulting nanocomposite. In particular, we demonstrate the ability to tune the overall optical response in the visible spectral region by varying the Au NCs arrangement within the polymer matrix, and therefore the interparticle plasmon coupling, using Au NCs resulting from the same batch of synthesis. This is a consequence of two well-known effects on the optical properties of Au particles: the variation of the surrounding dielectric refractive index and interparticle plasmonic coupling. The research reported here shows a general strategy to produce optical responsive nanocomposites via control of the morphology of submicrometric polymer particles containing metal nanocrystals and thus is an alternative to the more common strategy of size tuning metal nanoparticles used as nanofillers

    Roles for Drosophila melanogaster myosin IB in maintenance of enterocyte brush-border structure and resistance to the bacterial pathogen Pseudomonas entomophila

    Get PDF
    Author Posting. © American Society for Cell Biology, 2007. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 18 (2007): 4625-4636, doi:10.1091/mbc.E07-02-0191.Drosophila myosin IB (Myo1B) is one of two class I myosins in the Drosophila genome. In the larval and adult midgut enterocyte, Myo1B is present within the microvillus (MV) of the apical brush border (BB) where it forms lateral tethers between the MV membrane and underlying actin filament core. Expression of green fluorescent protein-Myo1B tail domain in the larval gut showed that the tail domain is sufficient for localization of Myo1B to the BB. A Myo1B deletion mutation exhibited normal larval gut physiology with respect to food uptake, clearance, and pH regulation. However, there is a threefold increase in terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive enterocyte nuclei in the Myo1B mutant. Ultrastructural analysis of mutant midgut revealed many perturbations in the BB, including membrane tethering defects, MV vesiculation, and membrane shedding. The apical localization of both singed (fascin) and Dmoesin is impaired. BBs isolated from mutant and control midgut revealed that the loss of Myo1B causes the BB membrane and underlying cytoskeleton to become destabilized. Myo1B mutant larvae also exhibit enhanced sensitivity to oral infection by the bacterial pathogen Pseudomonas entomophila, and severe cytoskeletal defects are observed in the BB of proximal midgut epithelial cells soon after infection. Resistance to P. entomophila infection is restored in Myo1B mutant larvae expressing a Myo1B transgene. These results indicate that Myo1B may play a role in the local midgut response pathway of the Imd innate immune response to Gram-negative bacterial infection.This work was supported by National Institutes of Health grants DK-25387 (to M.S.M.), DK-55389 (to Jon Morrow, Yale School of Medicine), and GM-52857 (to L.G.T.) and a research grant from the Crohns and Colitis Foundation of America (to M.S.M.)

    Malar J

    Get PDF
    Background While sub-microscopic malarial infections are frequent and potentially deleterious during pregnancy, routine molecular detection is still not feasible. This study aimed to assess the performance of a Histidine Rich Protein 2 (HRP2)-based ultrasensitive rapid diagnostic test (uRDT, Alere Malaria Ag Pf) for the detection of infections of low parasite density in pregnant women. Methods This was a retrospective study based on samples collected in Benin from 2014 to 2017. A total of 942 whole blood samples collected in 327 women in the 1st and 3rd trimesters and at delivery were tested by uRDT, conventional RDT (cRDT, SD BIOLINE Malaria Ag Pf), microscopy, quantitative polymerase chain-reaction (qPCR) and Luminex-based suspension array technology targeting P. falciparum HRP2. The performance of each RDT was evaluated using qPCR as reference standard. The association between infections detected by uRDT, but not by cRDT, with poor maternal and birth outcomes was assessed using multivariate regression models. Results The overall positivity rate detected by cRDT, uRDT, and qPCR was 11.6% (109/942), 16.2% (153/942) and 18.3% (172/942), respectively. Out of 172 qPCR-positive samples, 68 were uRDT-negative. uRDT had a significantly better sensitivity (60.5% [52.7–67.8]) than cRDT (44.2% [36.6–51.9]) and a marginally decreased specificity (93.6% [91.7–95.3] versus 95.7% [94.0–97.0]). The gain in sensitivity was particularly high (33%) and statistically significant in the 1st trimester. Only 28 (41%) out of the 68 samples which were qPCR-positive, but uRDT-negative had detectable but very low levels of HRP2 (191 ng/mL). Infections that were detected by uRDT but not by cRDT were associated with a 3.4-times (95%CI 1.29–9.19) increased risk of anaemia during pregnancy. Conclusions This study demonstrates the higher performance of uRDT, as compared to cRDTs, to detect low parasite density P. falciparum infections during pregnancy, particularly in the 1st trimester. uRDT allowed the detection of infections associated with maternal anaemia

    The epidemiology of postpartum malaria: a systematic review

    Get PDF
    Pregnant women are more susceptible to malaria than their non-pregnant counterparts. Less is known about the risk of malaria in the postpartum period. The epidemiology of postpartum malaria was systematically reviewed. Eleven articles fitted the inclusion criteria. Of the 10 studies that compared malaria data from the postpartum period with pregnancy data, nine studies suggested that the risk for malaria infection decreased after delivery. All three studies that compared postpartum data with non-pregnant non-postpartum women concluded that the risk did not return to pre-pregnancy levels immediately after delivery. The results of this review have to be carefully interpreted, as the majority of studies were not designed to study postpartum malaria, and there was large variability in study designs and reported outcomes. Current evidence suggests an effort should be made to detect and radically cure malaria during pregnancy so that women do not enter the postpartum period with residual parasites
    corecore