19 research outputs found

    Doses efficaces en glyphosate et en 2,4-D pour le contrôle chimique des laitue d'eau (Pistia stratiotes, Linn.) et toxicité du glyphosate vis-à-vis des tilapias (Sarotherodon melanotheron)

    Get PDF
    The toxic effects of two herbicides Round up (gliphosate) and 2,4-D (herbazol) were tested on Pistia stratiotes (Linn. Araceae) samples cultivated in glass aquariums. The gliphosate appears to be more toxic on Pistia Stratiotes than 2,4-D. It was then tested on tilapia Sarotherodon melanotheron juveniles. The lethal dose for tilapia (CL50 = 13.25 mg.l -1) is about 18, 37 and 74 times higher than the glyphosate toxic dose for plants at 1, 2 and 4 meters water depth respectively

    Analyse des effets de l'ouverture du chenal de Grand Bassam (estuaire du fleuve Comoé, Lagune Ebrié) sur la macrofaune benthique lagunaire

    Get PDF
    This paper presents the results of a comparative study of three series of samples collected in the area near the Bassam channel before, six and twenty months after its opening in September 1987. Observed effects are the decrease in the abundance and the modification of the benthic macrofauna composition. These effects appeared to be definitive, without recovery of the most abundant species Corbula trigona. Most differences noted in the population structure are due to the increase of the salinity and at a least degree to the modification of the nature of the sediment

    Contribution à l'étude de la croissance de la fougère aquatique Salvinia molesta (Mitchell), Salviniaceae

    Get PDF
    The growth of the primary and the tertiary forms of the water fern Salvinia molesta was studied during 60 days in 0.06 m2 glass containers containing fresh water. The growth of this plant as a function of time is exponential. The two forms have growth rates statistically identical. The main daily growth rate, expressed in number of leaves, is equal to 6.40% per day for primary forms and 5.90% per day for tertiary form, with doubling time of 10.78 + 1.08 days and 11.64 + 0.15 days

    Summer maximum temperature in northern France over the past century: instrumental data versus multiple proxies (tree-ring isotopes, grape harvest dates and forest fires): Instrumental data versus multiple proxies (tree-ring isotopes, grape harvest dates and forest fires)

    No full text
    International audienceChanges in maximum spring and summer temperature are expected to have impacts on plant phenology and the occurrence of forest fires. Homogenised instrumental records of maximum spring and summer temperature are available in northern France for the past century, as well as documentary records of grape harvest dates and forest fire frequencies. Here we provide a new proxy of seasonal climate obtained by the analysis of latewood tree ring cellulose isotopic composition (δ18O, δ13C and δD), from 15 living oak trees (Quercus petraea) sampled in the Fontainebleau forest, near Paris. For the past 30 years, we have conducted a study on the inter-tree (for oxygen isotopes) and inter-station (for oxygen and hydrogen)isotopic variability. Multiple linear regression statistical analyses are used to assess the response function of documentary and tree-ring isotopic records to a variety of climatic and hydrological parameters. This calibration study highlights the correlation between latewood tree-ring δ18O and δ13C, grape harvest dates and numbers of forest fire starts with maximum growing season (April to September) temperature, showing the potential of multiple proxy reconstructions to assess the past fluctuations of this parameter prior to the instrumental period

    A bi-proxy reconstruction of Fontainebleau (France) growing season temperature from A.D. 1596 to 2000

    Get PDF
    International audienceIn this paper, we develop a new methodology to estimate past changes of growing season temperature at Fontainebleau (northern France). Northern France temperature fluctuations have been documented by homogenised instrumental temperature records (at most 140 year long) and by grape harvest dates (GHD) series, incorporated in some of the European-scale temperature reconstructions. We have produced here three new proxy records: d18O and d13C of latewood cellulose of living trees and timbers from Fontainebleau Forest and Castle, together with ring widths of the same samples. d13C data appear to be influenced by tree and age effects; ring widths are not controlled by a single climate parameter. By contrast, d18O and Burgundy GHD series exhibit strong links with Fontainebleau growing season maximum temperature. Each of these records can also be influenced by other factors such as vine growing practices, local insolation, or moisture availability. In order to reduce the influence of these potential biases, we have used a linear combination of the two records to reconstruct inter-annual fluctuations of Fontainebleau growing season temperature from 1596 to 2000. Over the instrumental period, the reconstruction is well correlated with the temperature data (R2=0.60). This reconstruction is associated with an uncertainty of ~1.1°C (1.5 standard deviation), and is expected to provide a reference series for the variability of growing season maximum temperature in Western Europe. Spectral analyses conducted on the reconstruction clearly evidence (i) the interest of combining the two proxy records in order to improve the power spectrum of the reconstructed versus observed temperature, (ii) changes in the spectral properties over the time, with varying weights of periodicities ranging between ~6 and ~25 years. Available reconstructions of regional growing season temperature fluctuations get increasingly divergent at the interannual or decadal scale prior to 1800. Our reconstruction suggests a warm interval in the late 17th century, with the 1680s as warm as the 1940s, followed by a prolonged cool period from the 1690s to the 1850s culminating in the 1770s. The persistency of the late 20th century warming trend appears unprecedented
    corecore